首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   308篇
  免费   75篇
  国内免费   88篇
测绘学   4篇
大气科学   2篇
地球物理   89篇
地质学   284篇
海洋学   50篇
综合类   17篇
自然地理   25篇
  2023年   7篇
  2022年   4篇
  2021年   15篇
  2020年   17篇
  2019年   15篇
  2018年   13篇
  2017年   18篇
  2016年   10篇
  2015年   14篇
  2014年   16篇
  2013年   23篇
  2012年   19篇
  2011年   25篇
  2010年   16篇
  2009年   22篇
  2008年   35篇
  2007年   31篇
  2006年   38篇
  2005年   18篇
  2004年   19篇
  2003年   14篇
  2002年   13篇
  2001年   19篇
  2000年   9篇
  1999年   8篇
  1998年   5篇
  1997年   8篇
  1996年   5篇
  1995年   3篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   3篇
  1990年   1篇
  1988年   1篇
  1986年   1篇
  1977年   2篇
排序方式: 共有471条查询结果,搜索用时 15 毫秒
71.
1985-2013年黑河中游流域地下水位动态变化特征   总被引:2,自引:0,他引:2  
在气候变化和人类活动的影响下, 黑河流域地表水和地下水的时空分布特征发生了很大变化. 研究水系统演化及其驱动机制对流域水资源可持续管理非常关键. 基于甘肃河西黑河中游流域地下水位动态、水文气象、土地利用和灌溉统计数据, 研究了1985-2013年黑河中游流域地下水位时空变化. 结果表明: 地表水的不合理分配和耕地的扩展导致了地下水的过量开采和地下水位的剧烈变化. 1985-2004年区域地下水位以下降为主; 2005-2013年呈现下降和回升两极发展趋势, 冲洪积扇群带地下水最大下降达17.41 m, 而黑河干流沿岸地下水位最大回升了3.3 m, 地下水埋深普遍增加了1.0~3.0 m. 尽管地下水位在2005-2013年表现出回升趋势, 但干流中游盆地地下水系统处于严重负均衡状态, 制定合理的“生态分水”方案和水资源综合管理规划非常紧迫.  相似文献   
72.
王霜  陈建生  周鹏 《岩土力学》2015,36(10):2847-2854
对由弱透水黏土层、细砂层和强透水砂砾层组成的三层堤基进行了管涌发展的砂槽模型试验,为了便于观察分析,细砂层由各种颜色的细彩砂依次排列在砂砾石层上表面,通过改变彩砂层的厚度分析研究了不同细砂层厚度对管涌发生、发展机制及过程的影响。试验结果表明,三层堤基细砂层厚度的不同使管涌发生的临界水力梯度、涌砂量和通道发展的速度不同,与双层堤基有很大区别。临界水力梯度是由多种元素决定的,包括破坏土体的性质及其整体性等;细砂层的存在使流量在渗透变形初期对涌砂不敏感;在试验中发生的相同水位下多次间歇性涌砂,其原因一方面是颗粒在运动过程中发生堵塞,另一方面是通道边界的土体失去支撑发生应力释放,抵抗力随着时间逐渐减小。  相似文献   
73.
辉绿岩脉作为来源于地幔的脉体,可作为深断裂活动的标志.在赤峰敖汉旗1:5万区调工作中,在邢家窝铺古元古代宝音图群中识别出近东西向展布的辉绿岩脉.辉绿岩脉锆石U-Pb LA-ICP-MS年龄显示603~521 Ma、450 Ma、259~262 Ma、237 Ma、(167.4±3.0)Ma等5组年龄.其中最小年龄(167.4±3.0)Ma代表了辉绿岩脉体的形成年龄.反映了赤峰-开原深断裂在中侏罗世的活化;其余几组年龄也与赤峰地区不同期次的岩浆活动相对应.结合前人资料总结了赤峰-开原深断裂的形成与演化.  相似文献   
74.
基于力学过程的蓄滞洪区洪水风险评估模型及应用   总被引:1,自引:0,他引:1       下载免费PDF全文
果鹏  夏军强  陈倩  李娜 《水科学进展》2017,28(6):858-867
为定量评估分蓄洪工程启用过程中蓄滞洪区的洪水风险等级,创建了基于力学过程的蓄滞洪区洪水风险评估模型。该模型采用二维水动力学模块计算蓄滞洪区的洪水演进过程,利用洪水中人体跌倒失稳公式及洪水中房屋、农作物损失的计算关系式,评估各类受淹对象的洪水风险等级。然后将二维水动力学模块计算的洪水要素与两个物理模型试验值进行对比,表明二维水动力学模块的计算精度良好。最后计算了荆江分洪工程启用时分洪区内洪水的演进过程,并评估洪灾中群众的危险等级和财产损失。计算结果表明:洪水演进至140 h时,蓄滞洪区群众、房屋、水稻和棉花的平均损失率分别为85%、59%、63%和72%。模型中提出的采用基于受淹对象失稳机制的洪水风险分析方法,比以往经验水深法划分风险等级的适用性更好,不仅能为洪水风险管理及蓄滞洪区启用标准制定提供参考,也能推广应用于溃坝或堰塞湖溃决等极端洪水风险评估。  相似文献   
75.
通过分析滹沱河流域降水量对黄壁庄水库径流量及石津灌区引水量影响,及其对引水量利用效率及地下水开采量影响分析表明,降水量与水库径流量、引水量和弃水量具有一定的正相关性,与引水利用效率成负相关。渠灌区农业地下水开采受降水量影响不明显,多年地下水位在潜水强蒸发带区间波动;井灌区以开采地下水灌溉为主,并受到降水量的明显影响,地下水呈逐年下降趋势。由此不同变化趋势,提出渠灌区适度开采浅层咸水与渠水混合灌溉,扩大渠灌面积,减少井灌区面积,对缓和井灌区地下水位下降有重要意义。  相似文献   
76.
锦屏二级水电站引水隧洞爆破开挖损伤特性研究   总被引:1,自引:0,他引:1  
陈明  胡英国  卢文波  严鹏  周创兵 《岩土力学》2011,32(Z2):172-177
爆破开挖导致的围岩损伤是围岩稳定性的重要影响因素。采用数值分析及现场检测的方法研究了锦屏二级引水隧洞岩体爆破开挖损伤特性。数值模拟结果表明,引水隧洞开挖引起的围岩应力重分布是围岩损伤的主要原因,爆炸荷载和应力重分布的耦合作用将增大引水隧洞围岩损伤区范围,增大的损伤深度可达1.5 m,考虑开挖荷载瞬态卸荷动态损伤效应的损伤区范围最大,较单独考虑围岩地应力准静态重分布所导致的损伤深度可增大1.9 m,平均损伤深度增大近1倍。现场检测成果较好地验证了数值模拟结果,表明爆破开挖可显著增大围岩的损伤范围。锦屏二级水电站引水隧洞开挖过程中,不可忽视爆炸荷载及开挖瞬态卸荷对围岩的损伤作用。  相似文献   
77.
The clustering of fracture orientations is important for tectonic studies and for geotechnical engineering. In this study, a real‐coded genetic algorithm was adopted to fitting a mixed Bingham distribution to orientation data by maximizing the log‐likelihood function of the distribution. The maximization is a difficult problem, because the function has multimodality and singularity. It was found that the algorithm was effective for this problem. Given the orientations of dilational fractures, the present method determines not only the stress axes and stress ratio of each of the fracture groups but also the maximum non‐dimensionalized fluid pressure at the time of their formation. In addition, the software calculates the 95 % error ellipses of the concentration axes. The present method found that the orientations of ore veins of the Akenobe Mine, SW Japan, should be partitioned into three clusters. It is shown that two of the groups had distinctive Zn and Sn contents, and that the ore fluids had overpressures only slightly greater than the minimum principal stress at the time of the deposition of Zn‐ and Sn‐rich veins.  相似文献   
78.
Predicted climate change and the associated sea level rise poses an increased threat of flooding due to wave overtopping events at sea and river dikes. To safeguard the land from flooding it is important to keep the soil erosion resistance at the dikes high. As plant roots can be very effective in reducing soil erosion rates by concentrated flow, the main goal of this study is to explore the variability in root system characteristics of five dike vegetation communities along the Scheldt River (Belgium) and to assess their effectiveness in controlling soil erosion rates during concentrated flow. This study is the first one to investigate systematically the erosion‐reducing potential of the root properties of representative dike vegetation communities in a temperate humid climate. Results show that the presence of Urtica dioica resulted in large differences in root length density (RLD) among dike vegetation communities. Observed RLD values in the topsoil ranged from 129 to 235 km m‐3 for dike vegetation communities without U. dioica, while smaller values ranging from 22 to 58 km m?3 were found for vegetation communities with U. dioica. The erosion‐reducing effect of the dike vegetation communities was estimated based on a global Hill curve model, linking the RLD to the soil detachment ratio (SDR; i.e. the ratio of the soil detachment rate for root‐permeated topsoils to the soil detachment rate for root‐free topsoils). Concentrated flow erosion rates are likely to be reduced to 13–16% of the erosion rates for root‐free topsoils if U. dioica is absent compared to 22–30% for vegetation communities with U. dioica. Hence, to maintain a high resistance of the soil against concentrated flow erosion it is important to avoid the overgrowth of grassland by U. dioica through an effective vegetation management. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
79.
In the Rhine-Meuse delta in the south-western part of the Netherlands,the morphology of the river branches is highly dependent on the erodibility of the subsoil.Erosion processes that were initiated after closure of the Haringvliet estuary branch by a dam(in 1970),caused a strong incision of several connecting branches.Due to the geological evolution of this area the lithology of the subsoil shows large variations in highly erodible sand and poorly erodible peat and clay layers.This study shows how the geological information can be used to create 3D maps of the erodibility of the sub-soil, and how this information can be used to schematize the sub-soil in computational models for morphological simulations.Local incisement of sand patches between areas with poorly erodible bed causes deep scour holes,hence increasing the risk on river-bank instability(flow slides) and damage to constructions such as groynes,quays,tunnels, and pipelines.Various types of mathematical models,ranging from 1D(SOBEK) to quasi-3D(Delft3D) have been applied to study the future development of the river bed and possible management options.The results of these approaches demonstrate that models require inclusion of a layer-bookkeeping approach for sub-soil schematization, non-uniform sediment fractions(sand-mud),tidal and river-discharge boundary conditions,and capacity-reduction transport modeling.For risk-reducing river management it has been shown how the development of the river bed can be addressed on a large scale and small scale.For instance,the use of sediment feeding and fixation of bed can be proposed for large-scale management,while monitoring and interventions at initiation of erosion can be proposed as response to small-scale developments that exceed predefined intervention levels.  相似文献   
80.
三峡工程蓄水运用以来水库排沙效果   总被引:1,自引:0,他引:1       下载免费PDF全文
针对三峡水库蓄水运用以来排沙比问题,在深入研究三峡水库不同蓄水运用阶段水库排沙效果的基础上,着重研究各年年内蓄水排沙过程,系统地分析水库排沙效果的影响因素。结果表明:库区河道特性、入库水沙条件以及坝前水位的高低是水库排沙比变化的主要影响因素。2003年6月~2010年12月,水库排沙比为26.1%。水库排沙主要集中在汛期5~10月,排沙比为29.0%。尤其是在洪峰期间,库区水流流速较大,水流挟沙能力强,进入水库的泥沙大部分能输移到坝前,水库排沙比较大,当入库流量大于30000m3/s时,水库最大排沙比可达81.0%。此外,随着汛期坝前水位的抬高,水库排沙效果有所减弱,尤其是粗颗粒泥沙的多少也很大程度上影响水库排沙效果,水流的挟沙能力随着水流流速的减小而减小,粗颗粒泥沙的排沙比随之发生较全沙更为明显的减小。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号