首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   440篇
  免费   102篇
  国内免费   251篇
测绘学   9篇
大气科学   193篇
地球物理   145篇
地质学   37篇
海洋学   360篇
综合类   22篇
自然地理   27篇
  2024年   5篇
  2023年   10篇
  2022年   30篇
  2021年   37篇
  2020年   46篇
  2019年   25篇
  2018年   19篇
  2017年   35篇
  2016年   26篇
  2015年   22篇
  2014年   45篇
  2013年   52篇
  2012年   27篇
  2011年   29篇
  2010年   32篇
  2009年   23篇
  2008年   34篇
  2007年   32篇
  2006年   39篇
  2005年   36篇
  2004年   27篇
  2003年   18篇
  2002年   16篇
  2001年   27篇
  2000年   16篇
  1999年   13篇
  1998年   14篇
  1997年   11篇
  1996年   3篇
  1995年   9篇
  1994年   9篇
  1993年   8篇
  1992年   4篇
  1991年   4篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1983年   1篇
排序方式: 共有793条查询结果,搜索用时 31 毫秒
61.
A small, lightweight (1.5 kg) and fast-response ozone sensor for direct eddy flux measurements has been built. The basis for detection is the chemiluminescence of an organic dye adsorbed on dry silica gel in the reaction with ozone. The chemiluminescence is monitored with a cheap and small blue-sensitive photomultiplier. At a flow rate of 100 l min-1 the ozone sensor has a 90% response time of significantly better than 0.1 s with a detection limit lower than 50 ppt at S/N=3. There are no interferences from other atmospheric trace gases like NOx, H2O2 and PAN. Water vapour and SO2 enhance the chemiluminescence efficiency of the ozone sensor. Since their response times are 22 seconds and 30 minutes, respectively, no correlation between rapid ozone fluctuations and those of these two trace gases is noticed by the ozone sensor when operating at a frequency of 10 Hz.The ozone sensor was tested for several weeks in continuous measurements of ozone fluxes and deposition velocities over different croplands using the eddy correlation technique. Good agreement was found between ozone dry deposition velocities derived from profile measurements and by eddy correlation.  相似文献   
62.
In the estimation of momentum fluxes over land surfaces by the bulk aerodynamic method, no unique value of the drag coefficient (C D) is found in the literature. The drag coefficient is generally estimated from special observations at different parts of the world. In this study an attempt is made to estimate drag coefficient over the western desert sector of India using data sets of Monsoon Trough Boundary Layer Experiment (MONTBLEX) during the summer monsoon season of 1990. For this purpose, the fast and slow response data sets obtained simultaneously from a 30 m high micro-meteorological tower at Jodhpur are used. All the observations used in this study are confined to a wind speed regime of 2.5–9.0 ms−1. A comparison of momentum fluxes computed by eddy correlation (direct estimation) with profile and bulk aerodynamic (C D = 3.9 × 10−3, Garratt, 1977) methods revealed that though the nature of variation of the fluxes by all these methods is almost similar, both the indirect methods give an under-estimated value of the fluxes. The drag coefficient is estimated as a function of wind speed and surface stability by a multiple regression approach. An average value of the estimated drag coefficient is found to be of the order of 5.43 × 10−3. The estimated value ofC D is validated with a set of independent observations and found to be quite satisfactory. The recomputed momentum fluxes by bulk aerodynamic method using the estimated drag coefficient are in close agreement with the directly estimated fluxes.  相似文献   
63.
At present, using Eddy Covariance (EC) method to estimate the "true value" of carbon sequestration in terrestrial ecosystem arrests more attention. However, one issue is how to solve the uncertainty of observations (especially the nighttime CO2 flux data) appearing in post-processing CO2 flux data. The ratio of effective and reliable nighttime EC CO2 flux data to all nighttime data is relatively low (commonly, less than 50%) for all the long-term and continuous observation stations in the world. Thus, the processing method of nighttime CO2 flux data and its effect analysis on estimating CO2 flux annual sums are very important. In this paper, the authors analyze and discuss the reasons for underestimating nighttime CO2 flux using EC method, and introduce the general theory and method for processing nighttime CO2 flux data. By analyzing the relationship between nighttime CO2 flux and air fraction velocity u., we present an alternate method, Average Values Test (AVT), to determine the thresholds of fraction velocity (u.c) for screening the effective nighttime CO2 flux data. Meanwhile, taking the data observed in Yucheng and Changbai Mountains stations for an example, we analyze and discuss the effects of different methods or parameters on nighttime CO2 flux estimations. Finally, based on the data of part ChinaFLUX stations and related literatures, empirical models of nighttime respiration at different sites in ChinaFLUX are summarized.  相似文献   
64.
Knowledge of seasonal variation of net ecosystem CO2 exchange (NEE) and its biotic and abiotic controllers will further our understanding of carbon cycling process, mechanism and large-scale modelling. Eddy covariance technique was used to measure NEE, biotic and abiotic factors for nearly 3 years in the hinterland alpine steppe--Korbresia meadow grassland on the Tibetan Plateau, the present highest fluxnet station in the world. The main objectives are to investigate dynamics of NEE and its components and to determine the major controlling factors. Maximum carbon assimilation took place in August and maximum carbon loss occurred in November. In June, rainfall amount due to monsoon climate played a great role in grass greening and consequently influenced interannual variation of ecosystem carbon gain. From July through September, monthly NEE presented net carbon assimilation. In other months, ecosystem exhibited carbon loss. In growing season, daytime NEE was mainly controlled by photosynthetically active radiation (PAR). In addition, leaf area index (LAI) interacted with PAR and together modulated NEE rates. Ecosystem respiration was controlled mainly by soil temperature and simultaneously by soil moisture. Q10 was negatively correlated with soil temperature but positively correlated with soil moisture. Large daily range of air temperature is not necessary to enhance carbon gain. Standard respiration rate at referenced 10℃(R10) was positively correlated with soil moisture, soil temperature, LAI and aboveground biomass. Rainfall patterns in growing season markedly influenced soil moisture and therefore soil moisture controlled seasonal change of ecosystem respiration. Pulse rainfall in the beginning and at the end of growing season induced great ecosystem respiration and consequently a great amount of carbon was lost. Short growing season and relative low temperature restrained alpine grass vegetation development. The results suggested that LAI be usually in a low level and carbon uptake be relatively low. Rainfall patterns in the growing season and pulse rainfall in the beginning and at end of growing season control ecosystem respiration and consequently influence carbon balance of ecosystem.  相似文献   
65.
郑峰 《气象科学》2006,26(3):323-327
利用NCEP 1x1再分析资料诊断2001年8月3~4日发生在浙南闽北的东风波及其诱生中尺度低涡的暴雨过程。根据螺旋度(Helicity)分析了过程中的暴雨演变以及雁荡山脉[1]诱生中尺度低涡发生发展的原因。同时,利用中尺度有限区域模式MM5V2对该东风波诱生中尺度低涡进行模拟。结果表明:螺旋度大值中心和锋区的强度和位置的演变较好反映了暴雨落区和中尺度低涡的诱生、移动。螺旋度的时空演变对暴雨发生有很好的预示意义,高、低层螺旋度的低层正值辐合与高层负值辐散的配置是引起降水的重要机制;螺旋度计算较中尺度模式诱生低涡的初生位置、路径预报准确率高,两者集成可以提高诱生低涡的预报准确率。  相似文献   
66.
Buoyancy and The Sensible Heat Flux Budget Within Dense Canopies   总被引:1,自引:8,他引:1  
In contrast to atmospheric surface-layer (ASL) turbulence, a linear relationship between turbulent heat fluxes (FT) and vertical gradients of mean air temperature within canopies is frustrated by numerous factors, including local variation in heat sources and sinks and large-scale eddy motion whose signature is often linked with the ejection-sweep cycle. Furthermore, how atmospheric stability modifies such a relationship remains poorly understood, especially in stable canopy flows. To date, no explicit model exists for relating FT to the mean air temperature gradient, buoyancy, and the statistical properties of the ejection-sweep cycle within the canopy volume. Using third-order cumulant expansion methods (CEM) and the heat flux budget equation, a “diagnostic” analytical relationship that links ejections and sweeps and the sensible heat flux for a wide range of atmospheric stability classes is derived. Closure model assumptions that relate scalar dissipation rates with sensible heat flux, and the validity of CEM in linking ejections and sweeps with the triple scalar-velocity correlations, were tested for a mixed hardwood forest in Lavarone, Italy. We showed that when the heat sources (ST) and FT have the same sign (i.e. the canopy is heating and sensible heat flux is positive), sweeps dominate the sensible heat flux. Conversely, if ST and FT are opposite in sign, standard gradient-diffusion closure model predict that ejections must dominate the sensible heat flux.  相似文献   
67.
The relationships between the 200-hPa westerly jet stream anomalies over the East Asian coastal water- western Pacific(WPJS),and the oceanic surface heating and synoptic-scale transient eddy(STE)activity anomalies over the North Pacific in wintertime are examined by using ERA-40 and NCEP/NCAR reanalysis data.The analysis demonstrates that the surface heating and the STE anomalies have different patterns, corresponding to the three WPJS anomalous modes,respectively.In the first WPJS anomalous mode,the WPJS main part shows no robust anomaly.The anomalous westerly wind,occurring over the mid-latitude central-eastern Pacific past the date line is associated with the anomalous heating presenting both in the tropical central-eastern Pacific past the date line and the center of the North Pacific basin.Meanwhile,the STE anomaly appears around the region of the anomalous zonal wind.The fluctuation in jet strength shown in the second WPJS mode is strongly related to the heating anomaly in the Kuroshio Current region and the STE anomaly in the jet exit region.The third mode demonstrates a northward/southward shift of the WPJS,which has a statistical connection with a south-north dipolar pattern of the heating anomaly in the western North Pacific separated at 35°N.Meanwhile,the STE spatial displacement is in conjunction with jet shifts in the same direction.The heating anomaly has a close connection with the atmospheric circulation, and thus changes the mid-latitude baroclinicity,leading to the STE anomaly,which then reinforces the WPJS anomaly via internal atmospheric dynamics.  相似文献   
68.
鼎湖山针阔叶混交林生态系统能量平衡分析   总被引:8,自引:0,他引:8       下载免费PDF全文
能量平衡分析作为评价涡度相关法通量观测数据可靠性方法,备受学界重视。应用OLS(Ordinary least squares)和EBR(Energy Balance Ratio)2种方法,系统分析了广东省鼎湖山针阔叶混交林生态系统能量平衡特点,并分析各种涡度通量修正方法对能量平衡的影响,结果表明鼎湖山通量站平均能力平衡不闭合度为33%-47%,略高于普遍报道的不闭合度范围(10%-30%)。WPL修正、μ*订正和坐标转换,使得能量平衡闭合度有所提高,但夜间特别是冬季能量平衡较差问题依然没有得到根本解决,表明夜间弱湍流并不是导致夜间能量平衡闭合度差的主要原因。为客观评价本通量站以及ChinaFLUX能量平衡状况和通量数据质量,确定涡度相关法CO2通量数据分析方法和改进策略提供依据。  相似文献   
69.
利用涡旋相关方法和蒸发皿方法分别测量了裸地和玉米田的空气动力学阻抗, 分析了空气动力学阻抗的日变化特征, 同时对两种测量方法进行了比较。结果表明:实测空气动力学阻抗的日变化比较明显, 但变化幅度不大 (0~200 s/m)。两种方法得到的空气动力学阻抗具有可比性, 但蒸发皿方法测量的空气动力学阻抗普遍小于涡旋相关方法的测量值。  相似文献   
70.
Measurements of water vapour flux from semi‐arid perennial woodland (mallee) were made for 3 years using eddy covariance instrumentation. There have been no previous long‐term, detailed measures of water use in this ecosystem. Latent energy flux (LE) on a half hourly basis was the measure of the combined soil and plant evaporation, ‘evapotranspiration’ (ELE) of the site. Aggregation over 3 years of the site measured rain (1136 mm) and the estimated evaporation (794 mm) suggests that 342 mm or 30% of rain had moved into or past the root zone of the vegetation. Above average rainfall during 2011 and the first quarter of 2012 (633 mm, 15 months) would likely have been the period during which significant groundwater recharge occurred. At times immediately after rainfall, ELE rates were the same or exceeded estimates of potential E calculated from a suitably parameterized Penman–Monteith (EPMo) equation. Apparent free water E from plant interception and soil evaporation was about 2.3 mm and lasted for 1.3 days following rainfall in summer, while in autumn, E was 5.1 mm that lasted over 5.4 days. The leaf area index (LAI) needed to adjust a wind function calibrated Penman equation (EPMe) to match the ELE values could be back calculated to generate seasonal change in LAI from 0.12 to 0.46 and compared well with normalized difference vegetation index; r = 0.38 and p = 0.0213* and LAI calculated from digital cover photography. The apparently conservative response of perennial vegetation evaporation to available water in these semi‐arid environments reinforces the conclusion that these ecosystems use this mechanism to survive the reasonably common dry periods. Plant response to soil water availability is primarily through gradual changes in leaf area. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号