首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   768篇
  免费   76篇
  国内免费   109篇
测绘学   28篇
大气科学   18篇
地球物理   144篇
地质学   461篇
海洋学   98篇
天文学   2篇
综合类   43篇
自然地理   159篇
  2024年   1篇
  2023年   4篇
  2022年   29篇
  2021年   18篇
  2020年   23篇
  2019年   30篇
  2018年   20篇
  2017年   29篇
  2016年   29篇
  2015年   21篇
  2014年   30篇
  2013年   62篇
  2012年   27篇
  2011年   37篇
  2010年   21篇
  2009年   33篇
  2008年   52篇
  2007年   43篇
  2006年   45篇
  2005年   30篇
  2004年   49篇
  2003年   32篇
  2002年   35篇
  2001年   29篇
  2000年   17篇
  1999年   22篇
  1998年   24篇
  1997年   19篇
  1996年   23篇
  1995年   12篇
  1994年   23篇
  1993年   17篇
  1992年   13篇
  1991年   9篇
  1990年   5篇
  1989年   7篇
  1988年   12篇
  1987年   2篇
  1986年   6篇
  1985年   4篇
  1984年   4篇
  1981年   3篇
  1978年   2篇
排序方式: 共有953条查询结果,搜索用时 19 毫秒
11.
实验研究维生素C多聚磷酸酯(LAPP)添加在对虾饲料中,对中国对虾的生长、缺氧耐受力及免疫抵抗力的影响;实验进一步证明了中国对虾饲料中LAPP的最适添加量为400mg/100g饲料;本文还提出饲料中的LAPP能够提高中国对虾的缺氧耐受力,在溶氧超过3.1mg/kg海水的情况下,效果显著,在降低到2.3mg/kg海水时,作用减弱;用副溶血弧菌(Vibroparahaemolyticus)注射入虾体内,12小时内记录发现,饲料中不含LAPP的一组中国对虾,死亡率高于其它组,并且,LAPP含量最高的一组,死亡率明显低,死亡时间也出现较晚,这证明LAPP能够提高中国对虾的免疫抵抗力;本实验用注射金黄色葡萄球菌后细胞的吞噬百分率作指标,研究对虾细胞的吞噬作用,发现饲料中不含LAPP的对虾的吞噬百分率较低,随着饲料中LAPP浓度的提高,对虾血细胞的吞噬百分率逐渐升高,说明中国对虾细胞的吞噬作用逐步增强。  相似文献   
12.
斜坡非饱和带低渗透岩石结构体风化前锋扩展过程   总被引:2,自引:0,他引:2  
徐则民 《地学前缘》2008,15(4):258-268
非饱和带低渗透岩石结构体风化前锋扩展是斜坡灾害孕育过程中的关键环节之一。到目前为止,化学风化领域的研究成果主要集中在高水-岩比的饱和环境下单矿物及矿物成分单一的碳酸盐岩的风化动力学方面,非饱和环境下的岩石风化研究还主要限于风化产物的特性描述方面。斜坡非饱和带低渗透岩石结构体风化前锋扩展是一种高度复杂的THMC过程。由于在溶解对象、溶解液及溶解过程的水动力-水化学环境等方面存在的显著差异,既有的地质材料风化动力学成果为探索这一复杂过程提供了理论储备,但还不能阐明其核心机理。斜坡非饱和带低渗透岩石结构体风化前锋的扩展过程研究不仅可以加深人们对斜坡灾害孕育的理解,为灾害预报-预警及其控制提供理论依据,同时可以促进岩石-岩体力学及浅表生水文地球化学等相关学科的交叉与发展。  相似文献   
13.
跨带土地利用规划图的编制研究   总被引:1,自引:0,他引:1  
在县级土地利用规划用图中,常涉及到跨投影带的地图拼接问题,一般使用邻带转换法实现跨带区域的地图显示,该方法在实际应用中存在面积和角度变形相对较大的不足.本文采用自定义中央经线的投影转带方法,经过高斯投影变换,较好地解决了县域范围的跨带拼接显示并有效控制了相关变形.  相似文献   
14.
The study area is the South Tatarstan Arch located in the Volgo-Ural Region, which is an enigmatic crustal segment occupying one third of the East European Platform. Monitoring studies have shown that fluid discharge processes are still active and time-dependent. This paper presents an integrated review of the geological, geophysical, hydrochemical and geochemical studies of the crystalline basement of Tatarstan. These studies are based on the stratigraphic and compositional schemes within the crystalline basement, the drilling of deep wells, the geodynamic activity of the fractured zones of the crystalline basement and the presence of fluids therein. Furthermore, the changes in the chemical composition of the basement waters are taken into account.  相似文献   
15.
The study region is located in the Lower Tagus Valley, central Portugal, and includes a large portion of the densely populated area of Lisbon. It is characterized by a moderate seismicity with a diffuse pattern, with historical earthquakes causing many casualties, serious damage and economic losses. Occurrence of earthquakes in the area indicates the presence of seismogenic structures at depth that are deficiently known due to a thick Cenozoic sedimentary cover. The hidden character of many of the faults in the Lower Tagus Valley requires the use of indirect methodologies for their study. This paper focuses on the application of high-resolution seismic reflection method for the detection of near-surface faulting on two major tectonic structures that are hidden under the recent alluvial cover of the Tagus Valley, and that have been recognized on deep oil-industry seismic reflection profiles and/or inferred from the surface geology. These are a WNW–ESE-trending fault zone located within the Lower Tagus Cenozoic basin, across the Tagus River estuary (Porto Alto fault), and a NNE–SSW-trending reverse fault zone that borders the Cenozoic Basin at the W (Vila Franca de Xira–Lisbon fault). Vertical electrical soundings were also acquired over the seismic profiles and the refraction interpretation of the reflection data was carried out. According to the interpretation of the collected data, a complex fault pattern disrupts the near surface (first 400 m) at Porto Alto, affecting the Upper Neogene and (at least for one fault) the Quaternary, with a normal offset component. The consistency with the previous oil-industry profiles interpretation supports the location and geometry of this fault zone. Concerning the second structure, two major faults were detected north of Vila Franca de Xira, supporting the extension of the Vila Franca de Xira–Lisbon fault zone northwards. One of these faults presents a reverse geometry apparently displacing Holocene alluvium. Vertical offsets of the Holocene sediments detected in the studied geophysical data of Porto Alto and Vila Franca de Xira–Lisbon faults imply minimum slip rates of 0.15–0.30 mm/year, three times larger than previously inferred for active faults in the Lower Tagus Valley and maximum estimates of average return periods of 2000–5000 years for M 6.5–7 co-seismic ruptures.  相似文献   
16.
The Walter‐Outalpa shear zone in the southern Curnamona Province of NE South Australia is an example of a shear zone that has undergone intensely focused fluid flow and alteration at mid‐crustal depths. Results from this study have demonstrated that the intense deformation and ductile shear zone reactivation, at amphibolite facies conditions of 534 ± 20 °C and 500 ± 82 MPa, that overprint the Proterozoic Willyama Supergroup occurred during the Delamerian Orogeny (c. 500 Ma) (EPMA monazite ages of 501 ± 16 and 491 ± 19 Ma). This is in contrast to the general belief that the majority of basement deformation and alteration in the southern Curnamona Province occurred during the waning stages of the Olarian Orogeny (c. 1610–1580 Ma). These shear zones contain hydrous mineral assemblages that cut wall rocks that have experienced amphibolite facies metamorphism during the Olarian Orogeny. The shear zone rock volumes have much lower δ18O values (as low as 1‰) than their unsheared counterparts (7–9‰), and calculated fluid δ18O values (5–8‰) consistent with a surface‐derived fluid source. Hydrous minerals show a decrease in δD(H2O) from ?14 to ?22‰, for minerals outside the shear zones, to ?28 to ?40‰, for minerals within the shear zones consistent with a contribution from a meteoric source. It is unclear how near‐surface fluids initially under hydrostatic pressure penetrate into the middle crust where fluid pressures approach lithostatic, and where fluid flow is expected to be dominantly upward because of pressure gradients. We propose a mechanism whereby faulting during basin formation associated with the Adelaidean Rift Complex (c. 700 Ma) created broad hydrous zones containing mineral assemblages in equilibrium with surface waters. These panels of fault rock were subsequently buried to depths where the onset of metamorphism begins to dehydrate the fault rock volumes evolving a low δ18O fluid that is channelled through shear zones related to Delamerian Orogenic activity.  相似文献   
17.
Fluid flow patterns have been determined using oxygen isotope isopleths in the Val-d’Or orogenic gold district. 3D numerical modelling of fluid flow and oxygen isotope exchange in the vein field shows that the fluid flow patterns can be reproduced if the lower boundary of the model is permeable, which represents middle or lower crustal rocks that are infiltrated by a metamorphic fluid generated at deeper levels. This boundary condition implies that the major crustal faults so conspicuous in vein fields do not act as the only major channel for upward fluid flow. The upper model boundary is impermeable except along the trace of major crustal faults where fluids are allowed to drain out of the vein field. This upper impermeable boundary condition represents a low-permeability layer in the crust that separates the overpressured fluid from the overlying hydrostatic fluid pressure regime. We propose that the role of major crustal faults in overpressured vein fields, independent of tectonic setting, is to drain hydrothermal fluids out of the vein field along a breach across an impermeable layer higher in the crust and above the vein field. This breach is crucial to allow flow out of the vein field and accumulation of metals in the fractures, and this breach has major implications for exploration for mineral resources. We propose that tectonic events that cause episodic metamorphic dehydration create a short-lived pulse of metamorphic fluid to rise along zones of transient permeability. This results in a fluid wave that propagates upward carrying metals to the mineralized area. Earthquakes along crustal shear zones cause dilation near jogs that draw fluids and deposit metals in an interconnected network of subsidiary shear zones. Fluid flow is arrested by an impermeable barrier separating the hydrostatic and lithostatic fluid pressure regimes. Fluids flow through the evolving and interconnected network of shear zones and by advection through the rock matrix. Episodic breaches in the impermeable barrier along the crustal shear zones allow fluid flow out of the vein field.  相似文献   
18.
19.
Questions persist concerning the earthquake potential of the populous and industrial Lake Ontario (Canada–USA) area. Pertinent to those questions is whether the major fault zone that extends along the St. Lawrence River valley, herein named the St. Lawrence fault zone, continues upstream along the St. Lawrence River valley at least as far as Lake Ontario or terminates near Cornwall (Ontario, Canada)–Massena (NY, USA). New geological studies uncovered paleotectonic bedrock faults that are parallel to, and lie within, the projection of that northeast-oriented fault zone between Cornwall and northeastern Lake Ontario, suggesting that the fault zone continues into Lake Ontario. The aforementioned bedrock faults range from meters to tens of kilometers in length and display kinematically incompatible displacements, implying that the fault zone was periodically reactivated in the study area. Beneath Lake Ontario the Hamilton–Presqu'ile fault lines up with the St. Lawrence fault zone and projects to the southwest where it coincides with the Dundas Valley (Ontario, Canada). The Dundas Valley extends landward from beneath the western end of the lake and is marked by a vertical stratigraphic displacement across its width. The alignment of the Hamilton–Presqu'ile fault with the St. Lawrence fault zone strongly suggests that the latter crosses the entire length of Lake Ontario and continues along the Dundas Valley.The Rochester Basin, an east–northeast-trending linear trough in the southeastern corner of Lake Ontario, lies along the southern part of the St. Lawrence fault zone. Submarine dives in May 1997 revealed inclined layers of glaciolacustrine clay along two different scarps within the basin. The inclined layers strike parallel to the long dimension of the basin, and dip about 20° to the north–northwest suggesting that they are the result of rigid-body rotation consequent upon post-glacial faulting. Those post-glacial faults are growth faults as demonstrated by the consistently greater thickness, unit-by-unit, of unconsolidated sediments on the downthrown (northwest) side of the faults relative to their counterparts on the upthrown (southeast) side. Underneath the western part of Lake Ontario is a monoclinal warp that displaces the glacial and post-glacial sediments, and the underlying bedrock–sediment interface. Because of the post-glacial growth faults and the monoclinal warp the St. Lawrence fault zone is inferred to be tectonically active beneath Lake Ontario. Furthermore, within the lake it crosses at least five major faults and fault zones and coexists with other neotectonic structures. Those attributes, combined with the large earthquakes associated with the St. Lawrence fault zone well to the northeast of Lake Ontario, suggest that the seismic risk in the area surrounding and including Lake Ontario is likely much greater than previously believed.  相似文献   
20.
In the Archaean Pilbara Craton of Western Australia, three zones of heterogeneous centimetre- to metre-scale sheeted granites are interpreted to represent high-level, syn-magmatic shear zones. Evidence for the syn-magmatic nature of the shear zones include imbricated and asymmetrically rotated metre-scale orthogneiss xenoliths that are enveloped by leucogranite sheets that show no significant internal strain. At another locality, granite sheets have a strong shape-preferred alignment of K-feldspar, suggesting magmatic flow, while the asymmetric recrystallisation of the grain boundaries indicates that non-coaxial deformation continued acting upon the sheets under sub-solidus conditions. Elsewhere, randomly oriented centimetre-wide leucogranite dykes are realigned at a shear zone boundary to form semi-continuous, layer-parallel sheets within a magma-dominated, dextral shear zone.

It is proposed that the granite sheets formed by the incremental injection of magmas into active shear zones. Magma was sheared during laminar flow to produce the sheets that are aligned sub-parallel to the shear zone boundary. Individual sheets are fed by individual dykes, with up to 1000s of discrete injections in an individual shear zone. The sheets often lack microstructural evidence for magmatic flow, either because the crystal content of the magma was too low to record internal strain, or because of later recrystallisation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号