首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   523篇
  免费   78篇
  国内免费   19篇
测绘学   11篇
大气科学   10篇
地球物理   295篇
地质学   137篇
海洋学   50篇
天文学   1篇
综合类   14篇
自然地理   102篇
  2024年   2篇
  2023年   3篇
  2022年   8篇
  2021年   20篇
  2020年   27篇
  2019年   26篇
  2018年   18篇
  2017年   23篇
  2016年   22篇
  2015年   20篇
  2014年   31篇
  2013年   52篇
  2012年   31篇
  2011年   22篇
  2010年   16篇
  2009年   26篇
  2008年   27篇
  2007年   28篇
  2006年   28篇
  2005年   25篇
  2004年   17篇
  2003年   20篇
  2002年   12篇
  2001年   14篇
  2000年   10篇
  1999年   3篇
  1998年   10篇
  1997年   16篇
  1996年   5篇
  1995年   6篇
  1994年   8篇
  1993年   8篇
  1992年   7篇
  1991年   4篇
  1990年   6篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   6篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1976年   1篇
排序方式: 共有620条查询结果,搜索用时 15 毫秒
11.
Based on geographical and hydrological extents delimited, four principles are identified, as the bases for delineating the ranges of the source regions of the Yangtze and Yellow rivers in the paper. According to the comprehensive analysis of topographical characteristics, climate conditions, vegetation distribution and hydrological features, the source region ranges for eco-environmental study are defined. The eastern boundary point is Dari hydrological station in the upper reach of the Yellow River. The watershed above Dari hydrological station is the source region of the Yellow River which drains an area of 4.49×104 km2. Natural environment is characterized by the major topographical types of plateau lakes and marshland, gentle landforms, alpine cold semi-arid climate, and steppe and meadow vegetation in the source region of the Yellow River. The eastern boundary point is the convergent site of the Nieqiaqu and the Tongtian River in the upstream of the Yangtze River. The watershed above the convergent site is the source region of the Yangtze River, with a watershed area of 12.24×104 km2. Hills and alpine plain topography, gentle terrain, alpine cold arid and semi-arid climate, and alpine cold grassland and meadow are natural conditions in the source region of the Yangtze River.  相似文献   
12.
Runoff and precipitation scaling with respect to drainage area is analyzed for large river basins of the world, those with mean annual runoff in excess of 10 k3/yr. The usefulness of the specific runoff (runoff per unit drainage area, m/yr) to categorize runoff scaling laws across the complete spectrum of climatic and hydrologic conditions is evaluated. It is found that (1) runoff scales with drainage are in those river basins with specific runoff in excess of 0.15 m/yr (r2 = 0.88); (2) runoff scaling with drainage area shows remarkably high statistical correlation (r2= 0.97) in river basins with specific runoff equal to or larger than 1.0 m/yr; (3) runoff does not Inc.rease with Inc.reasing drainage area in river basins with specific runoff below 0.15 m/yr, where no discernible statistical association was found between runoff and drainage area; and (4) precipitation depth (m/yr) is inversely proportional to drainage area raised to a fractional exponent in river basins with specific runoff in excess of 0.15 m/yr.  相似文献   
13.
三江源地区气候变化及其对生态环境的影响   总被引:30,自引:2,他引:30  
李林  朱西德  周陆生  汪青春 《气象》2004,30(8):18-22
利用EOF等方法通过计算 1 96 2~ 2 0 0 1年 4 0年来三江源地区 1 6个气象台站气温、降水、蒸发资料 ,分析了三江源地区近 4 0年来气候变化的异常特征及其对生态环境的影响 ,结果表明 :三江源地区气候变化表现为气温升高、降水减少和蒸发增大的干旱化气候变化趋势 ,同时 ,在气候干旱化和人为活动的影响下出现了草场退化、湖泊萎缩、河流流量减少、土壤沙化和水土流失等生态环境荒漠化问题。  相似文献   
14.
A quantitative, three‐dimensional depositional model of gravelly, braided rivers has been developed based largely on the deposits of the Sagavanirktok River in northern Alaska. These deposits were described using cores, wireline logs, trenches and ground‐penetrating radar profiles. The origin of the deposits was inferred from observations of: (1) channel and bar formation and migration and channel filling, interpreted from aerial photographs; (2) water flow during floods; and (3) the topography and texture of the river bed at low‐flow stage. This depositional model quantitatively represents the geometry of the different scales of strataset, the spatial relationships among them and their sediment texture distribution. Porosity and permeability in the model are related to sediment texture. The geometry of a particular type and scale of strataset is related to the geometry and migration of the bedform type (e.g. ripples, dunes, bedload sheets, bars) associated with deposition of the strataset. In particular, the length‐to‐thickness ratio of stratasets is similar to the wavelength‐to‐height ratio of associated bedforms. Furthermore, the wavelength and height of bedforms such as dunes and bars are related to channel depth and width. Therefore, the thickness of a particular scale of strataset (i.e. medium‐scale cross‐sets and large‐scale sets of inclined strata) will vary with river dimensions. These relationships between the dimensions of stratasets, bedforms and channels mean that this depositional model can be applied to other gravelly fluvial deposits. The depositional model can be used to interpret the origin of ancient gravelly fluvial deposits and to aid in the characterization of gravelly fluvial aquifers and hydrocarbon reservoirs.  相似文献   
15.
贡嘎山东坡海螺沟的河川径流特征   总被引:4,自引:1,他引:4  
对贡嘎山高山水文观测试验系统进行了简要介绍,并对海螺沟冰川河以及黄崩溜沟的径流特征进行了初步探讨。由于大气降水同是冰川河及黄崩溜沟径流的重要补给来源,故其径流量的季节变化明显带有大气降水过程的烙印,显得丰、枯分明。在冰川河,冰雪融水和地下水在枯水季节的稳定补给改变了大气降水对冰川河径流的年内分配过程;在黄崩溜沟,由于冰雪融水和地下水对其径流的补给非常有限,大气降水过程对其径流过程的影响便明显大过冰川河。  相似文献   
16.
Late Quaternary alluvial induration has greatly influenced contemporary channel morphology on the anabranching Gilbert River in the monsoon tropics of the Gulf of Carpentaria. The Gilbert, one of a number of rivers in this region, has contributed to an extensive system of coalescing low-gradient and partly indurated riverine plains. Extensive channel sands were deposited by enhanced flow conditions during marine oxygen isotope (OI) Stage 5. Subsequent flow declined, probably associated with increased aridity, however, enhanced runoff recurred again in OI Stages 4–3 (65–50 ka). Aridity then capped these plains with 4–7 m of mud. A widespread network of sandy distributary channels was incised into this muddy surface from sometime after the Last Glacial Maximum (LGM) to the mid Holocene during a fluvial episode more active than the present but less so than those of OI Stages 5 and 3. This network is still partly active but with channel avulsion and abandonment now occurring largely proximal to the main Gilbert flow path.A tropical climate and reactive catchment lithology have enhanced chemical weathering and lithification of alluvium along the river resulting in the formation of small rapids, waterfalls and inset gorges, features characteristic more of bedrock than alluvial systems. Thermoluminescence (TL) and comparative optically stimulated luminescence (OSL) ages of the sediments are presented along with U/Th ages of pedogenic calcrete and Fe/Mn oxyhydroxide/ oxide accumulations. They show that calcrete precipitated during the Late Quaternary at times similar to those that favoured ferricrete formation, possibly because of an alternating wet–dry climate. Intense chemical alteration of the alluvium leading to induration appears to have prevailed for much of the Late Quaternary but, probably due to exceptional dryness, not during the LGM. The result has been restricted channel migration and a reduced capacity for the channel to adjust and accommodate sudden changes in bedload. Consequent avulsions have caused local stream powers to increase by an order of magnitude, inducing knickpoint erosion, local incision and the sudden influx of additional bedload that has triggered further avulsions. The Gilbert River, while less energetic than its Pleistocene ancestors, is clearly an avulsive system, and emphasizes the importance in some tropical rivers of alluvial induration for reinforcing the banks, generating nickpoints, reworking sediment and thereby developing and maintaining an indurated and anabranching river style.  相似文献   
17.
Surface water oxygen and hydrogen isotopic values are commonly used as proxies of precipitation isotopic values to track modern hydrologic processes while proxies of water isotopic values preserved in lake and river sediments are used for paleoclimate and paleoaltimetry studies. Previous work has been able to explain variability in USA river‐water and meteoric‐precipitation oxygen isotope variability with geographic variables. These studies show that in the western United States, river‐water isotopic values are depleted relative to precipitation values. In comparison, the controls on lake‐water isotopic values are not well constrained. It has been documented that western United States lake‐water input values, unlike river water, reflect the monthly weighted mean isotopic value of precipitation. To understand the differing controls on lake‐ and river‐water isotopic values in the western United States, we examine the seasonal distribution of precipitation, evaporation and snowmelt across a range of seasonality regimes. We generate new predictive equations based on easily measured factors for western United States lake‐water, which are able to explain 69–63% of the variability in lake‐water hydrogen and oxygen isotopic values. In addition to the geographic factors that can explain river and precipitation values, lake‐water isotopic values need factors related to local hydrologic and climatic characteristics to explain variability. Study results suggest that the spring snowmelt runs off the landscape via rivers and streams, depleting river and stream‐water isotopic values. By contrast, lakes receive seasonal contributions of precipitation in proportion to the seasonal fraction of total annual precipitation within their watershed. Climate change may alter the ratio of snow to rain fall, affecting water resource partitioning between rivers and lakes and by implication of groundwater. Paleolimnological studies must account for the multiple drivers of water isotopic values; likewise, studies based on the isotopic composition of fossil material need to distinguish between species that are associated with rivers versus lakes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
18.
Bedform geometry is widely recognized to be a function of transport stage. Bedform aspect ratio (height/length) increases with transport stage, reaches a maximum, then decreases as bedforms washout to a plane bed. Bedform migration rates are also linked to bedform geometry, in so far as smaller bedforms in coarser sediment tend to migrate faster than larger bedforms in finer sediment. However, how bedform morphology (height, length and shape) and kinematics (translation and deformation) change with transport stage and suspension have not been examined. A series of experiments is presented where initial flow depth and grain size were held constant and the transport stage was varied to produce bedload dominated, mixed‐load dominated and suspended‐load dominated conditions. The results show that the commonly observed pattern in bedform aspect ratio occurs because bedform height increases then decreases with transport stage, against a continuously increasing bedform length. Bedform size variability increased with transport stage, leading to less uniform bedform fields at higher transport stage. Total translation‐related and deformation‐related sediment fluxes all increased with transport stage. However, the relative contribution to the total flux changed. At the bedload dominated stage, translation‐related and deformation‐related flux contributed equally to the total flux. As the transport stage increased, the fraction of the total load contributed by translation increased and the fraction contributed by deformation declined because the bedforms got bigger and moved faster. At the suspended‐load dominated transport stage, the deformation flux increased and the translation flux decreased as a fraction of the total load, approaching one and zero, respectively, as bedforms washed out to a plane bed.  相似文献   
19.
针对王官屯油田官142断块侏罗系厚储层的特点,以取芯井岩芯分析资料为基础,应用因子分析的方法,将厚约50 m的砂砾岩层划分为13个流动单元,分为A、B、C、D四类.在流动单元划分的基础上,根据各类沉积相标志,将目的层确定为辫状河沉积相,大面积分布的辫状水道、心滩为该区储层沉积的主体.为了进一步精细划分沉积微相,应用各类岩性与泥质体积分数、声波时差、电阻率的交汇图,建立了各类沉积微相-岩石相的岩性、物性、电性划分标准,实现了沉积微相的精细划分.其与流动单元的空间配置关系决定了剩余油分布的差异性.这种基于流动单元划分沉积微相的方法是依据储层渗流性质的差异将储层划分成符合其渗流规律的层系,便于同油田开发的生产层系相结合,从而满足层系开发调整的需要.  相似文献   
20.
翟佳豪  刘影  肖池伟 《热带地理》2022,42(8):1376-1385
基于1987—2018年西双版纳30 m分辨率橡胶林数据集,利用叠置、缓冲区等GIS空间分析方法,对比分析了过去32年橡胶林沿道路、河流和边境线的空间变化特征与区域差异。结果表明:1) 1987—2018年,西双版纳橡胶种植面积在道路、河流沿线5 km以内分别增加了1 874.6和1 484.6 km2,在边境地区(国境线20km缓冲带)增加了1 393.1 km2。2)从道路沿线看,受橡胶种植可达性和交通运输影响,过去32年道路5 km缓冲带内的橡胶林平均占比超过九成。3)从河流沿线看,因灌溉和水源等需求,过去32年河流沿线5 km缓冲带内橡胶林平均占比69.7%。值得注意的是,受天然橡胶价格持续低迷、城镇化与生态环境保护等影响,2010年河流沿线橡胶林种植面积开始下降,沿线2 km内表现尤为显著。4)从边境地区看,西双版纳橡胶林种植呈明显趋边性特征,跨境种植频繁。过去32年边境沿线地区橡胶林平均占比55.6%,且由1987年的35.4%上升到2018年的66.2%,其中,在中缅边境的扩张面积和速率高于中老边境。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号