首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   523篇
  免费   78篇
  国内免费   19篇
测绘学   11篇
大气科学   10篇
地球物理   295篇
地质学   137篇
海洋学   50篇
天文学   1篇
综合类   14篇
自然地理   102篇
  2024年   2篇
  2023年   3篇
  2022年   8篇
  2021年   20篇
  2020年   27篇
  2019年   26篇
  2018年   18篇
  2017年   23篇
  2016年   22篇
  2015年   20篇
  2014年   31篇
  2013年   52篇
  2012年   31篇
  2011年   22篇
  2010年   16篇
  2009年   26篇
  2008年   27篇
  2007年   28篇
  2006年   28篇
  2005年   25篇
  2004年   17篇
  2003年   20篇
  2002年   12篇
  2001年   14篇
  2000年   10篇
  1999年   3篇
  1998年   10篇
  1997年   16篇
  1996年   5篇
  1995年   6篇
  1994年   8篇
  1993年   8篇
  1992年   7篇
  1991年   4篇
  1990年   6篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   6篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1976年   1篇
排序方式: 共有620条查询结果,搜索用时 15 毫秒
521.
Images from specially-commissioned aeroplane sorties (manned aerial vehicle, MAV), repeat unmanned aerial vehicle (UAV) surveys, and Planet CubeSat satellites are used to quantify dune and bar dynamics in the sandy braided South Saskatchewan River, Canada. Structure-from-Motion (SfM) techniques and application of a depth-brightness model are used to produce a series of Digital Surface Models (DSMs) at low and near-bankfull flows. A number of technical and image processing challenges are described that arise from the application of SfM in dry and submerged environments. A model for best practice is presented and analysis suggests a depth-brightness model approach can represent the different scales of bedforms present in sandy braided rivers with low-turbidity and shallow (< 2 m deep) water. The aerial imagery is used to quantify the spatial distribution of unit bar and dune migration rate in an 18 km reach and three ~1 km long reaches respectively. Dune and unit bar migration rates are highly variable in response to local variations in planform morphology. Sediment transport rates for dunes and unit bars, obtained by integrating migration rates (from UAV) with the volume of sediment moved (from DSMs using MAV imagery) show near-equivalence in sediment flux. Hence, reach-based sediment transport rate estimates can be derived from unit bar data alone. Moreover, it is shown that reasonable estimates of sediment transport rate can be made using just unit bar migration rates as measured from 2D imagery, including from satellite images, so long as informed assumptions are made regarding average bar shape and height. With recent availability of frequent, repeat satellite imagery, and the ease of undertaking repeat MAV and UAV surveys, for the first time, it may be possible to provide global estimates of bedload sediment flux for large or inaccessible low-turbidity rivers that currently have sparse information on bedload sediment transport rates. © 2018 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   
522.
环太湖江苏段入湖河道污染物通量与湖区水质的响应关系   总被引:1,自引:1,他引:0  
基于2008-2018年环太湖江苏段入湖河道污染物通量及湖区水质数据,从时空变化及相关关系两个方面探讨了入湖污染物通量与湖区水质的响应关系,并分析了污染物进入湖体影响水质的主要因子.结果表明:太湖污染减排已见成效,氨氮、总氮、高锰酸盐指数和化学需氧量入湖污染物通量整体呈下降趋势,年均下降率分别为8.0%、2.0%、1.6%和2.2%,湖体氨氮和总氮时间格局响应较好,年均下降率分别为2.1%和2.3%.湖体氨氮、总氮、总磷、高锰酸盐指数和化学需氧量与入湖污染物通量整体由西北部、西部湖区向东南部、东部湖区递减,空间格局上响应基本一致.全湖区年尺度总氮、氨氮浓度与入湖河道污染物通量分别呈显著正相关、极显著正相关关系;影响湖区总氮、氨氮的主要因子为入湖河道的总氮、氨氮浓度,其次为入湖河道浓度与原湖区水质差值,因此亟需加强入湖河道水质浓度的控制.  相似文献   
523.
韩翠红  孙海龙  魏榆  鲍乾  晏浩 《湖泊科学》2020,32(6):1683-1694
耦联水生光合作用的碳酸盐风化碳汇是全球碳循环的重要组成部分,而生物碳泵效应是稳定碳酸盐风化碳汇的关键机制.河流筑坝后,生物碳泵效应的变化、控制因素及对水化学影响的研究甚少.本研究对2个喀斯特筑坝河流平寨水库和红枫湖进行系统采样,以研究河流筑坝后生物碳泵效应的变化、控制因素及对水化学的影响.研究结果表明,入库河流的水化学变化不明显,而2个水库的水化学则表现出显著的季节变化特征,具体表现为水库的水温和pH均呈现出夏季高、冬季低的变化特征,而电导率(EC)、HCO3-浓度和pCO2则表现出夏季低、冬季高的季节变化特征.以叶绿素a(Chl.a)浓度和溶解氧(DO)饱和度指代的生物碳泵效应则是在夏季最强、冬季最弱.生物碳泵效应利用溶解性无机碳(DIC),形成有机质并释放出氧气,是造成夏季水库pH值和DO饱和度升高,电导率(EC)、HCO3-浓度和pCO2降低的主要因素.空间上,水库的Chl.a浓度及DO饱和度均大于河水,EC、HCO3-浓度和pCO2均小于河水,这表明河流筑坝后,由于水库的“湖泊化”导致水库的生物碳泵效应显著提高.通过对Chl.a与碳、氮和磷浓度及化学计量比的相关性分析发现,平寨水库和红枫湖的生物碳泵效应受到碳施肥的影响.平寨水库和红枫湖水库生物碳泵效应碳施肥机制的发现,表明在喀斯特地区,生物碳泵效应不仅受到氮磷元素的控制,也受到碳元素的控制,因此在富营养化湖泊治理时,也应考虑碳的影响.  相似文献   
524.
Neck cutoffs and their resultant oxbow lakes are important and prominent features of riverine landscapes. Detailed field-based research focusing on the morphologic evolution of neck cutoffs is currently insufficient to fully characterize cutoff evolution. High-resolution bathymetric data were collected over 3 years for the purpose of determining channel morphology and morphologic change on three actively evolving neck cutoffs. Results indicate the following general trends in morphologic adjustment: (1) a longitudinal bar in the upstream meander limb that develops near the entrance to the abandoned bend; (2) a deep scour hole in the downstream meander limb immediately downstream of the cutoff channel; (3) erosion of the bank opposite the cutoff in the downstream meander limb; (4) a cutoff bar in the downstream meander limb at the junction corner of the cutoff channel and the downstream meander limb; and (5) perching of the exit of the abandoned bend above the cutoff channel due to channel bed incision. The results presented herein were used to develop a conceptual model that depicts the morphologic evolution of highly curving neck cutoffs. The findings of this research are combined with recent analyses of the three-dimensional flow structure through neck cutoffs to provide a mechanistic explanation for the morphodynamics of neck cutoffs. © 2019 John Wiley & Sons, Ltd.  相似文献   
525.
Six plains cottonwoods along the axis of a meander were excavated to determine if dendrochronology could identify the year and location of germination and date past overbank sedimentation events. Samples from all excavated trees showed clear anatomical changes associated with burial, including increased vessel size, decreased definition of annual ring boundaries, and decreased ring widths. Some of these burial signatures were created by deposition of only a few centimeters of sediment, and most burial events were detected by multiple samples from the same tree. Four of the trees germinated at or near the upper surfaces of bar deposits, while two germinated within thin overbank deposits draped over bar deposits, indicating that germination is closely associated with bars. Dates and inferred thicknesses of overbank sedimentation events are consistent with repeated topographic surveys and data obtained from cesium-137 (137Cs) analyses. However, the record of overbank sedimentation extracted from the trees does not entirely reflect the history of past peak discharges documented by stream gaging, largely because individual trees are progressively less likely to be flooded through time as the river migrates farther away. Germination dates and locations closely track past positions of the river channel. Germination elevations and the elevations of the tops of point bars appear to be decreasing with time as the bend migrates, implying vertical incision by Powder River at a rate of 7.1 ± 4.3 mm/yr. The rate of floodplain growth determined by elevation changes decreases progressively through time, ultimately reaching an apparent plateau after 0.8–1.3 m of vertical accretion. While similar patterns of vertical accretion have previously been interpreted as resulting from decreasing flood probability with increasing floodplain elevation, distance from the channel is also a first-order control on vertical floodplain growth. © 2019 John Wiley & Sons, Ltd.  相似文献   
526.
Amphitheatre-headed canyons are common on Earth and Mars and researchers have long sought to draw inferences about canyon-forming processes from the morphology of canyon heads and associated knickpoints, often suggesting that amphitheatre heads indicate erosion by groundwater seepage erosion. However, the conditions and processes that lead to amphitheatre-headed canyon formation have been debated for many years. We consider two hypotheses that attribute the amphitheatre-headed canyon formation to fluvial erosion of strong-over-weak stratigraphy or, alternatively, groundwater spring discharge and seepage erosion. A spatial analysis of canyon-form distribution with respect to local stratigraphy along the Escalante River and on Tarantula Mesa, Utah indicates that canyon form is most closely related to variations in local sedimentary rock strata, rather than inferred groundwater spring intensity. Lateral facies variations that affect the continuity of strong layers can induce or disrupt the formation of amphitheatres. Furthermore, we find that amphitheatre retreat rate is dictated by the interaction of fluvial processes downstream of the amphitheatre headwalls and stratigraphy, rather than waterfall and groundwater processes that likely importantly influence headwall form. We conclude that fluvial erosion of strong-over-weak stratigraphic layering alone is sufficient to form amphitheatres at knickpoints and canyon heads. Thus, we re-affirm that formation process should not be inferred from canyon-head morphology, particularly where a strong-over-weak layering is known or plausible. © 2020 John Wiley & Sons, Ltd.  相似文献   
527.
Most grain size monitoring is still being conducted by manual sampling in the field, which is time consuming and has low spatial representation. Due to new remote sensing methods, some limitations have been partly overcome, but methodological progress is still needed for large rivers as well as in underwater conditions. In this article, we tested the reliability of two methods along the Old Rhine River (France/Germany) to estimate the grain size distribution (GSD) in above-water conditions: (i) a low-cost terrestrial photosieving method based on an automatic procedure using Digital Grain Size (DGS) software and (ii) an airborne LiDAR topo-bathymetric survey. We also tested the ability of terrestrial photosieving to estimate the GSD in underwater conditions. Field pebble counts were performed to compare and calibrate both methods. The results showed that the automatic procedure of terrestrial photosieving is a reliable method to estimate the GSD of sediment patches in both above-water and underwater conditions with clean substrates. Sensitivity analyses showed that environmental conditions, including solar lighting conditions and petrographic variability, significantly influence the GSD from the automatic procedure in above-water conditions. The presence of biofilm in underwater conditions significantly altered the GSD estimation using the automatic procedure, but the proposed manual procedure overcame this problem. The airborne LiDAR topographic survey is an accurate method to estimate the GSD of above-water bedforms and is able to generate grain size maps. The combination of terrestrial photosieving and airborne topographic LiDAR methods is adapted to assess the GSD over several kilometers long reaches of large rivers. © 2020 John Wiley & Sons, Ltd.  相似文献   
528.
Atmospheric Rivers (ARs) have been linked to many of the largest recorded UK winter floods. These large-scale features can be 500–800 km in width but produce markedly different flood responses in adjacent catchments. Here we combine meteorological and hydrological data to examine why two impermeable catchments on the west coast of Britain respond differently to landfalling ARs. This is important to help better understand flood generation associated with ARs and improve flood forecasting and climate-change impact assessment. Analysis of 32 years of a newly available ERA5 high-resolution atmospheric reanalysis and corresponding 15-min river flow data show that the most impactful ARs arise through a combination of the orientation and magnitude of their water vapour flux. At the Dyfi catchment, AR orientations of between 238–258° result in the strongest hydrological responses, whereas at the Teifi the range is 224–243°. We believe this differential flood response is the result of catchment orientation and topography enhancing or suppressing orographic rainfall totals, even in relatively low-relief coastal catchments. Further to the AR orientation, ARs must have an average water vapour flux of 400–450 kg m−1 s−1 across their lifetime. Understanding the preferential properties of impactful ARs at catchments allows for the linking of large-scale synoptic features, such as ARs, directly to winter flood impacts. These results using two test catchments suggest a novel approach to flood forecasts through the inclusion of AR activity.  相似文献   
529.
530.
The mass and size distribution of grain entrainment per unit bed area may be measured by replacing a volume of the bed with tracer gravels and observing the mass difference before and after a transport event. This measure of spatial entrainment is relevant to any process involving size-selective exchange of sediment between transport and bed and may be directly used in calculations of sediment transport rate using an elementary relation for fractional transport components presented here. This relation provides a basis for evaluating tracer data collected by different methods and may be used to provide physical insight regarding the expected behaviour of tracer grains. The variation with grain size of total displacement length Lti depends on the degree of mobilization of the individual fractions on the bed surface: Lti is independent of Di for smaller, fully mobile sizes and decreases rapidly with Di for larger fractions in a state of partial transport (in which a portion of the surface grains remain immobile through the flow event). The boundary between fully and partially mobile grain sizes increases with flow strength. These inferences are supported by values of Lti calculated from flume experiments and provide a physical explanation for a summary relation between Lti and Di based on field data. © 1997 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号