首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3623篇
  免费   620篇
  国内免费   1016篇
测绘学   342篇
大气科学   864篇
地球物理   817篇
地质学   1594篇
海洋学   374篇
天文学   492篇
综合类   179篇
自然地理   597篇
  2024年   12篇
  2023年   31篇
  2022年   110篇
  2021年   170篇
  2020年   157篇
  2019年   160篇
  2018年   143篇
  2017年   154篇
  2016年   216篇
  2015年   223篇
  2014年   230篇
  2013年   276篇
  2012年   232篇
  2011年   241篇
  2010年   194篇
  2009年   259篇
  2008年   227篇
  2007年   272篇
  2006年   240篇
  2005年   235篇
  2004年   214篇
  2003年   215篇
  2002年   164篇
  2001年   137篇
  2000年   116篇
  1999年   102篇
  1998年   106篇
  1997年   62篇
  1996年   70篇
  1995年   56篇
  1994年   42篇
  1993年   33篇
  1992年   36篇
  1991年   27篇
  1990年   21篇
  1989年   13篇
  1988年   18篇
  1987年   7篇
  1986年   4篇
  1985年   6篇
  1984年   6篇
  1983年   2篇
  1982年   3篇
  1981年   4篇
  1980年   4篇
  1979年   2篇
  1978年   6篇
  1976年   1篇
排序方式: 共有5259条查询结果,搜索用时 15 毫秒
991.
选择黄土丘陵沟壑区的羊圈沟流域,应用地理信息系统和野外采样技术,从小流域,坡面和单一土地利用类型三个尺度层次研究土地利用变化对流域土壤侵蚀,土壤养分和土壤水分的影响。结果发现:1996年比1984年该流域坡耕地减少43%,林地增加了42%,草地增加了5%,土壤侵蚀量减少了24%。  相似文献   
992.
The present observational status of the Sct stars, Dor stars and roAp stars is discussed. The Sct stars are the most intensively observed of the three groups, but it has become clear that there are severe problems in extracting asteroseismic information from them. Dozens of frequencies are observed, but hundreds of frequencies are predicted from the models; unique matches of observation and theory still elude us. The Sct stars are observationally complex – some recent `best case' campaigns are discussed. It is possible that substantial observational advances for Sct stars may need to await upcoming satellite missions. New Dor stars are beingdiscovered frequently, and new behaviour is being found for them. They constitutean observationally young field. Their pulsational frequency range is being expanded, their position in the HR diagram is becoming better known (but is yet to be fully constrained), and the possibility exists of hybrid Dor – Sct stars that have greatasteroseismic promise, although it is clear such stars are rare, if they do exist. It has been observationally challenging to extract more than a fewfrequencies for any Dor star so far. Exciting spectroscopic discoveries of new behaviour in roAp stars promise unprecedented information about the structure of the peculiar atmospheres ofthose stars – pulsation amplitude and phase in 3D, magnetic field structurein 3D, abundance stratification in 3D, realistic T- for the most peculiarstars – as well as entirely new information about the interaction of pulsation,rotation and magnetic fields. Recent theoretical work has led to new understandingof the previously inexplicable frequency spacing of HR 1217 with new Whole Earth Telescope observations supporting this theory. An `improved oblique pulsator model' has been developed in which the pulsationaxis is not the magnetic axis; this model has passed several observationaltests and new ones are being devised to examine it further.  相似文献   
993.
Better knowledge regarding internal soil moisture and piezometric responses in the process of rainfall-induced shallow slope failures is the key to an effective prediction of the landslide and/or debris flow initiation. To this end, internal soil moisture and piezometric response of 0.7-m-deep, 1.5-m-wide, 1.7-m-high, and 3.94-m-long semi-infinite sandy slopes rested on a bi-linear impermeable bedrock were explored using a chute test facility with artificial rainfall applications. The internal response time defined by the inflection point of the soil moisture and piezometric response curves obtained along the soil–bedrock interface were closely related to some critical failure states, such as the slope toe failure and extensive slope failures. It was also found that the response times obtained at the point of abrupt bedrock slope decrease can be used as indicators for the initiation of rainfall-induced shallow slope failures. An investigation of spatial distributions of soil water content, ω (or degrees of saturation, Sr), in the slope at critical failure states shows that the 0.2 m – below – surface zone remains unsaturated with Sr 40–60%, regardless of their distances from the toe and the rainfall intensity. Non-uniform distributions of ω (or Sr) along the soil–bedrock interface at critical failure states were always associated with near-saturation states (Sr 80–100%) around the point of bedrock slope change or around the transient ‘toe’ upstream of the slumped mass induced by the retrogressive failure of the slope. These observations suggest the important role of the interflow along the soil–bedrock interface and the high soil water content (or high porewater pressure) around the point of bedrock slope deflection in the rainfall-induced failure of sandy slopes consisting of shallow impermeable bedrocks. The present study proposes an ‘internal response time’ criterion to substantiate the prediction of rainfall-induced shallow slope failures. It is believed that the ‘internal response time’ reflects the overall characteristics of a slope under rainfall infiltration and can be as useful as the conventional meteorology-based threshold times. The ‘internal response time’ theory can be generalized via numerical modeling of slope hydrology, slope geology and slope stability in the future.  相似文献   
994.
Retrieval of the terrestrial moisture storage dataset from the Gravity Recovery and Climate Experiment (GRACE) satellite remote sensing system is possible when the catchment of interest is of large spatial scale. These dataset are of paramount importance for the estimation of the total storage deficit index (TSDI), which enables the characterization of a particular drought event from the perspective of the terrestrial moisture storage over that catchment. Incidentally, the GRACE gravity signal over the 13,000 km2 Upper Assiniboine River Basin on the drought-prone Canadian Prairie is so poor therefore making the computation of the total storage deficit index for this basin infeasible. Consequently, the estimation of the terrestrial moisture storage from other reliable sources becomes imperative in order to enable the computation of the TSDI over this basin.This study explores the utilization of the Variable Infiltration Capacity (VIC) model, a physically based, spatially distributed hydrologic model to simulate the total moisture storage over the Upper Assiniboine River Basin which was then employed in the estimation of the TSDI over this basin for subsequent characterization of the recent Prairie-wide drought. Interestingly, the temporal patterns in the computed TSDI from the VIC model reveal a strong resemblance with the same drought characterization undertaken over the larger adjacent Saskatchewan River Basin, which was accomplished utilizing terrestrial moisture storage from the GRACE-based approach. Additionally, these independent techniques employed in the characterization of the last Prairie drought over the two adjacently situated basins resulted in similar drought severity classification from the standpoint of the total moisture storage deficits over these basins. This study has therefore shown that in the computation of the total storage deficit index over small-scale catchments during anomalous climatic conditions that propagate extreme dryness through the terrestrial hydrologic systems, simulations of the total water storage from a structurally sound model such as the VIC model could be resourceful for the computation of the monthly total storage deficit index if no constraint is placed on the availability of accurate meteorological forcing.  相似文献   
995.
Controls on event runoff coefficients in the eastern Italian Alps   总被引:3,自引:0,他引:3  
Analyses of event runoff coefficients provide essential insight on catchment response, particularly if a range of catchments and a range of events are compared by a single indicator. In this study we examine the effect of climate, geology, land use, flood types and initial soil moisture conditions on the distribution functions of the event runoff coefficients for a set of 14 mountainous catchments located in the eastern Italian Alps, ranging in size from 7.3 to 608.4 km2. Runoff coefficients were computed from hourly precipitation, runoff data and estimates of snowmelt. A total of 535 events were analysed over the period 1989–2004. We classified each basin using a “permeability index” which was inferred from a geologic map and ranged from “low” to “high permeability”. A continuous soil moisture accounting model was applied to each catchment to classify ‘wet’ and ‘dry’ initial soil moisture conditions. The results indicate that the spatial distribution of runoff coefficients is highly correlated with mean annual precipitation, with the mean runoff coefficient increasing with mean annual precipitation. Geology, through the ‘permeability index’, is another important control on runoff coefficients for catchments with mean annual precipitation less than 1200 mm. Land use, as indexed by the SCS curve number, influences runoff coefficient distribution to a lesser degree. An analysis of the runoff coefficients by flood type indicates that runoff coefficients increase with event snowmelt. Results show that there exists an intermediate region of subsurface water storage capacity, as indexed by a flow–duration curve-based index, which maximises the impact of initial wetness conditions on the runoff coefficient. This means that the difference between runoff coefficients characterised by wet and dry initial conditions is negligible both for basins with very large storage capacity and for basins with small storage capacity. For basins with intermediate storage capacities, the impact of the initial wetness conditions may be relatively large.  相似文献   
996.
The Land Information System (LIS) is an established land surface modeling framework that integrates various community land surface models, ground measurements, satellite-based observations, high performance computing and data management tools. The use of advanced software engineering principles in LIS allows interoperability of individual system components and thus enables assessment and prediction of hydrologic conditions at various spatial and temporal scales. In this work, we describe a sequential data assimilation extension of LIS that incorporates multiple observational sources, land surface models and assimilation algorithms. These capabilities are demonstrated here in a suite of experiments that use the ensemble Kalman filter (EnKF) and assimilation through direct insertion. In a soil moisture experiment, we discuss the impact of differences in modeling approaches on assimilation performance. Provided careful choice of model error parameters, we find that two entirely different hydrological modeling approaches offer comparable assimilation results. In a snow assimilation experiment, we investigate the relative merits of assimilating different types of observations (snow cover area and snow water equivalent). The experiments show that data assimilation enhancements in LIS are uniquely suited to compare the assimilation of various data types into different land surface models within a single framework. The high performance infrastructure provides adequate support for efficient data assimilation integrations of high computational granularity.  相似文献   
997.
The τω model of microwave emission from soil and vegetation layers is widely used to estimate soil moisture content from passive microwave observations. Its application to prospective satellite-based observations aggregating several thousand square kilometres requires understanding of the effects of scene heterogeneity. The effects of heterogeneity in soil surface roughness, soil moisture, water area and vegetation density on the retrieval of soil moisture from simulated single- and multi-angle observing systems were tested. Uncertainty in water area proved the most serious problem for both systems, causing errors of a few percent in soil moisture retrieval. Single-angle retrieval was largely unaffected by the other factors studied here. Multiple-angle retrievals errors around one percent arose from heterogeneity in either soil roughness or soil moisture. Errors of a few percent were caused by vegetation heterogeneity. A simple extension of the model vegetation representation was shown to reduce this error substantially for scenes containing a range of vegetation types.  相似文献   
998.
In this study we investigate the effect of forcing the land surface scheme of an atmospheric mesoscale model with radar rainfall data instead of the model-generated rainfall fields. The goal is to provide improved surface conditions for the atmospheric model in order to achieve accurate simulations of the mesoscale circulations that can significantly affect the timing, distribution and intensity of convective precipitation. The performance of the approach is evaluated in a set of numerical experiments on the basis of a 2-day-long mesoscale convective system that occurred over the US Great Plains in July 2004. The experimental design includes multiple runs covering a variety of forcing periods. Continuous data integration was initially used to investigate the sensitivity of the model’s performance in varying soil state conditions, while shorter time windows prior to the storm event were utilized to assess the effectiveness of the procedure for improving convective precipitation forecasting. Results indicate that continuous integration of radar rainfall data brings the simulated precipitation fields closer to the observed ones, as compared to the control simulation. The precipitation forecasts (up to 48 h) appear improved also in the cases of shorter integration periods (24 and 36 h), making this technique potentially useful for operational settings of weather forecasting systems. A physical interpretation of the results is provided on the basis of surface moisture and energy exchange.  相似文献   
999.
Soil moisture is an important component of the water cycle and will be measured for the first time on a global scale by a dedicated passive L-band microwave radiometer that is planned for launch in 2008. Here, the contribution of topography to the error budget is examined for a vegetated scene with uniform microwave emission. Dual-polarization brightness temperature curves were generated over a range of look angles for 1-D scenes with simple geometrical features, and the soil moisture was retrieved assuming a flat surface. The errors were small for the scenarios considered. Theoretical errors were tested for realistic topography with a DEM transect of a mountainous region, and were found to be comparable. Knowledge of the mean slope from high-resolution DEM data can be used to improve the accuracy of the retrieval.  相似文献   
1000.
Flume experiments simulating concentrated runoff were carried out on remolded silt loam soil samples (0·36 × 0·09 × 0·09 m3) to measure the effect of rainfall‐induced soil consolidation and soil surface sealing on soil erosion by concentrated flow for loess‐derived soils and to establish a relationship between soil erodibility and soil bulk density. Soil consolidation and sealing were simulated by successive simulated rainfall events (0–600 mm of cumulative rainfall) alternated by periods of drying. Soil detachment measurements were repeated for four different soil moisture contents (0·04, 0·14, 0·20 and 0·31 g g?1). Whereas no effect of soil consolidation and sealing is observed for critical flow shear stress (τcr), soil erodibility (Kc) decreases exponentially with increasing cumulative rainfall depth. The erosion‐reducing effect of soil consolidation and sealing decreases with a decreasing soil moisture content prior to erosion due to slaking effects occurring during rapid wetting of the dry topsoil. After about 100 mm of rainfall, Kc attains its minimum value for all moisture conditions, corresponding to a reduction of about 70% compared with the initial Kc value for the moist soil samples and only a 10% reduction for the driest soil samples. The relationship estimating relative Kc values from soil moisture content and cumulative rainfall depth predicts Kc values measured on a gradually consolidating cropland field in the Belgian Loess Belt reasonably well (MEF = 0·54). Kc is also shown to decrease linearly with increasing soil bulk density for all moisture treatments, suggesting that the compaction of thalwegs where concentrated flow erosion often occurs might be an alternative soil erosion control measure in addition to grassed waterways and double drilling. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号