首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   491篇
  免费   109篇
  国内免费   85篇
测绘学   120篇
大气科学   84篇
地球物理   139篇
地质学   175篇
海洋学   45篇
天文学   6篇
综合类   34篇
自然地理   82篇
  2024年   1篇
  2023年   5篇
  2022年   20篇
  2021年   20篇
  2020年   15篇
  2019年   24篇
  2018年   23篇
  2017年   44篇
  2016年   40篇
  2015年   39篇
  2014年   44篇
  2013年   40篇
  2012年   37篇
  2011年   22篇
  2010年   12篇
  2009年   16篇
  2008年   27篇
  2007年   19篇
  2006年   14篇
  2005年   20篇
  2004年   17篇
  2003年   30篇
  2002年   35篇
  2001年   27篇
  2000年   28篇
  1999年   23篇
  1998年   18篇
  1997年   12篇
  1996年   10篇
  1994年   1篇
  1992年   1篇
  1988年   1篇
排序方式: 共有685条查询结果,搜索用时 15 毫秒
191.
通过大量实践 ,总结了单层气气藏、含双层气气藏和多层气气藏在理想条件下的异常形态特征 ,实例为解释油气化探异常提供了一定的地球化学依据  相似文献   
192.
闽粤沿海老红砂多期沉积地层的发现及其意义   总被引:11,自引:5,他引:6  
吴正  王为 《中国沙漠》2001,21(4):328-332
对广泛分布于闽粤沿海的老红砂进行了全面的野外调查,调查发现在福建的平潭青峰、晋江科任和广东的惠来靖海资深园、徐闻锦和东门下等地的老红砂沉积地层,存在多期沉积。热释光(TL)、电子自旋共振(ESR)测年表明,它们是晚更新世中、晚期末次冰期(玉木冰期)的沉积,并可分出68~42ka和30~10ka两个相对较集中的沉积期。在这两期中,又以30~10ka左右的晚玉木冰期(Q33)的老红砂发育规模最大、分布最广,这显然与晚玉木冰期(盛冰期)时的气候更干冷、冬季风的风力更强劲,风沙活动更强烈有密切关系。  相似文献   
193.
论文首先介绍浅海声信道声传输的基本特性,指出在此类信道中进行多媒体信息传输的特殊困难.随后论述了文本信息传输所具有的抗噪声、抗起伏等优良性能,较能适应于水声信道的复杂性和多变性,但属于较高速率的文本信息传输,多途干扰仍然是文本信息正确检测的根本障碍.文中分析了频率跳变技术克服时域扩散较短的浅海多途的可行性和需解决的关键技术.海上获得的初步实验结果说明了文本信息传输所具有的优越性,值得今后继续深入的研究.  相似文献   
194.
H. S. Kim  S. Lee 《水文研究》2014,28(13):4023-4041
This study aimed to evaluate the effectiveness of the regionalization method on the basis of a combination of a parsimonious model structure and a multi‐objective calibration technique. For this study, 12 gauged catchments in the Republic of Korea were used. The parsimonious model structure, requiring minimal input data, was used to avoid adverse effects arising from model complexity, over‐parameterization and data requirements. The IHACRES rainfall‐runoff model was applied to represent the dynamic response characteristics of catchments in Korea. A multi‐objective approach was adopted to reduce the predictive uncertainty arising from the calibration of a rainfall‐runoff model, by increasing the amount of information retrieved from the available data. The regional relationships (or models) between the model parameters and the catchment attributes were established via a multiple regression approach, incorporating correlation analysis and stepwise regression on linear and logarithmic scales. The impacts of the parameters, calibrated by the multi‐objective approach, on the adequacy of regional relationships were assessed by comparison with impacts obtained by the single‐objective approach. The regional relationships were well defined, despite limited available data. The drainage area, the effective soil depth, the mean catchment slope and the catchment gradient appeared to be the main factors for describing the hydrologic response characteristics in the areas studied. The overall model performance of the regional models based on the multi‐objective approach was good, producing reasonable results for high and low flows and for the overall water balance, simultaneously. The regional models based on the single‐objective approach yielded accurate predictions in high flows but showed limited predictive capability for low flows and the overall water balance. This was due to the optimal model parameter estimates when using a single‐objective measure. The parameters calibrated by the single‐objective approach decreased the predictability of the regional models. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
195.
With the availability of spatially distributed data, distributed hydrologic models are increasingly used for simulation of spatially varied hydrologic processes to understand and manage natural and human activities that affect watershed systems. Multi‐objective optimization methods have been applied to calibrate distributed hydrologic models using observed data from multiple sites. As the time consumed by running these complex models is increasing substantially, selecting efficient and effective multi‐objective optimization algorithms is becoming a nontrivial issue. In this study, we evaluated a multi‐algorithm, genetically adaptive multi‐objective method (AMALGAM) for multi‐site calibration of a distributed hydrologic model—Soil and Water Assessment Tool (SWAT), and compared its performance with two widely used evolutionary multi‐objective optimization (EMO) algorithms (i.e. Strength Pareto Evolutionary Algorithm 2 (SPEA2) and Non‐dominated Sorted Genetic Algorithm II (NSGA‐II)). In order to provide insights into each method's overall performance, these three methods were tested in four watersheds with various characteristics. The test results indicate that the AMALGAM can consistently provide competitive or superior results compared with the other two methods. The multi‐method search framework of AMALGAM, which can flexibly and adaptively utilize multiple optimization algorithms, makes it a promising tool for multi‐site calibration of the distributed SWAT. For practical use of AMALGAM, it is suggested to implement this method in multiple trials with relatively small number of model runs rather than run it once with long iterations. In addition, incorporating different multi‐objective optimization algorithms and multi‐mode search operators into AMALGAM deserves further research. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
196.
We evaluated sources and pathways of groundwater recharge for a heterogeneous alluvial aquifer beneath an agricultural field, based on multi‐level monitoring of hydrochemistry and environmental isotopes of a riverside groundwater system at Buyeo, Korea. Two distinct groundwater zones were identified with depth: (1) a shallow oxic groundwater zone, characterized by elevated concentrations of NO3? and (2) a deeper (>10–14 m from the ground surface) sub‐oxic groundwater zone with high concentrations of dissolved Fe, silica, and HCO3?, but little nitrate. The change of redox zones occurred at a depth where the aquifer sediments change from an upper sandy stratum to a silty stratum with mud caps. The δ18O and δ2H values of groundwater were also different between the two zones. Hydrochemical and δ18O? δ2H data of oxic groundwater are similar to those of soil water. This illustrates that recharge of oxic groundwater mainly occurs through direct infiltration of rain and irrigation water in the sandy soil area where vegetable cropping with abundant fertilizer use is predominant. Oxic groundwater is therefore severely contaminated by agrochemical pollutants such as nitrate. In contrast, deeper sub‐oxic groundwater contains only small amounts of dissolved oxygen (DO) and NO3?. The 3H contents and elevated silica concentrations in sub‐oxic groundwater indicate a somewhat longer mean residence time of groundwater within this part of the aquifer. Sub‐oxic groundwater was also characterized by higher δ18O and δ2H values and lower d‐excess values, indicating significant evaporation during recharge. We suggest that recharge of sub‐oxic groundwater occurs in the areas of paddy rice fields where standing irrigation and rain water are affected by strong evaporation, and that reducing conditions develop during subsequent sub‐surface infiltration. This study illustrates the existence of two groundwater bodies with different recharge processes within an alluvial aquifer. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
197.
Abstract

The Saginaw Bay Regional Conservation Partnership Program (RCPP) in Michigan is an innovative conservation effort organized to address water quality impairments involving a unique collaboration between conservation organizations, agronomists, universities, commodity groups, and agribusinesses. We track the evolution and adaptation of the Saginaw Bay RCPP, and the collaboration among the traditional and nontraditional conservation partners. Our reflections are organized around three key lessons: vertical and horizontal communication challenges; contextual and structural constraints; barriers that remain between private and public sector entities for this and alternative conservation-delivery models. Lessons from this evaluation will inform the design of future collaborative/multi-stakeholder watershed management efforts. We also demonstrate that rather than being used as an ad-hoc approach, social science evaluation was integrated into conservation planning and practice, hence increasing the salience and legitimacy of the conservation social science in collaborative watershed management.  相似文献   
198.
Wave propagation and localization in ordered and disordered multi‐span beams on elastic foundations due to moving harmonic loads are investigated by using the transfer matrix methodology. The transfer matrix, as a function of the frequency and velocity of the moving harmonic load, of the periodic beam is formulated in a coordinate system moving with the load. The expressions of critical velocities, cut‐off frequency of an associated uniform beam without discrete spaced supports, are determined through the analysis of the wavenumbers, and the dynamic responses of the beam are also examined. For the ordered and disordered case, the propagation constants and localization factors are respectively employed to identify the velocity and frequency pass bands and stop bands in order to examine whether the perturbation can propagate along the structure or not. The effects of the periodicity, disorder level, excitation frequency, and moving velocity are studied in detail. The validity of the obtained results is confirmed by evaluating the transverse deformation of the beams through the finite element simulations. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
199.
This study was undertaken to evaluate the effects of climatic variability on inter‐annual variations in each component of evapotranspiration (ET) and the total ET in a temperate coniferous forest in Japan. We conducted eddy covariance flux and meteorological measurements for 7 years and parameterized a one‐dimensional multi‐layer biosphere‐atmosphere model (Kosugi et al., 2006 ) that partitions ET to transpiration (Tr), wet‐canopy evaporation (Ewet), and soil evaporation (Esoil). The model was validated with the observed flux data. Using the model, the components of ET were estimated for the 7 years. Annual precipitation, ET, Tr, Ewet, and Esoil over the 7 years were 1536 ± 334 mm, 752 ± 29 mm, 425 ± 37 mm, 219 ± 34 mm, and 108 ± 10 mm, respectively. The maximum inter‐annual fluctuation of observed ET was 64 mm with a coefficient of variance (CV) of 2.7%, in contrast to relatively large year‐to‐year variations in annual rainfall (CV = 20.1%). Tr was related to the vapour pressure deficit, incoming radiation, and air temperature with relatively small inter‐annual variations (CV = 8.2%). Esoil (CV = 8.6%) was related mainly to the vapour pressure deficit. Ewet was related to precipitation with large inter‐annual variations (CV = 14.3%) because of the variability in precipitation. The variations in Ewet were counterbalanced by the variations in Tr and Esoil, producing the small inter‐annual variations in total ET. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
200.
The present work develops an approach to seamlessly blend satellite, available radar, climatological and gauge precipitation products to fill gaps in ground‐based radar precipitation field. To mix different precipitation products, the error of any of the products relative to each other should be removed. For bias correction, the study uses an ensemble‐based method that aims to estimate spatially varying multiplicative biases in SPEs using a radar precipitation product. A weighted successive correction method (SCM) is used to make the merging between error corrected satellite and radar precipitation estimates. In addition to SCM, we use a combination of SCM and Bayesian spatial model for merging the rain gauges (RGs) and climatological precipitation sources with radar and SPEs. We demonstrated the method using a satellite‐based hydro‐estimator; a radar‐based, stage‐II; a climatological product, Parameter‐elevation Regressions on Independent Slopes Model and a RG dataset for several rain events from 2006 to 2008 over an artificial gap in Oklahoma and a real radar gap in the Colorado River basin. Results show that: the SCM method in combination with the Bayesian spatial model produced a precipitation product in good agreement with independent measurements. The study implies that using the available radar pixels surrounding the gap area, RG, Parameter‐elevation Regressions on Independent Slopes Model and satellite products, a radar‐like product is achievable over radar gap areas that benefit the operational meteorology and hydrology community. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号