首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   247篇
  免费   43篇
  国内免费   29篇
测绘学   11篇
大气科学   9篇
地球物理   116篇
地质学   80篇
海洋学   60篇
天文学   4篇
综合类   8篇
自然地理   31篇
  2023年   2篇
  2022年   3篇
  2021年   5篇
  2020年   12篇
  2019年   21篇
  2018年   7篇
  2017年   13篇
  2016年   8篇
  2015年   13篇
  2014年   9篇
  2013年   20篇
  2012年   9篇
  2011年   18篇
  2010年   18篇
  2009年   9篇
  2008年   16篇
  2007年   17篇
  2006年   7篇
  2005年   13篇
  2004年   9篇
  2003年   8篇
  2002年   12篇
  2001年   4篇
  2000年   5篇
  1999年   9篇
  1998年   8篇
  1997年   9篇
  1996年   3篇
  1995年   8篇
  1994年   4篇
  1993年   3篇
  1992年   2篇
  1990年   2篇
  1989年   3篇
  1988年   1篇
  1985年   3篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
排序方式: 共有319条查询结果,搜索用时 15 毫秒
31.
Anabranching rivers evolve in various geomorphic settings and various river planforms are present within these multi‐channel systems. In some cases, anabranches develop meandering patterns. Such river courses existed in Europe prior to intensive hydro‐technical works carried out during the last 250 years. Proglacial stream valleys, inherited from the last glaciation, provided a suitable environment for the development of anabranching rivers (wide valleys floors with abundant sand deposits). The main objective of the present study is to reconstruct the formation of an anabranching river planform characterized by meandering anabranches. Based on geophysical and geological data obtained from field research and a reconstruction of palaeodischarges, a model of the evolution of an anabranching river formed in a sandy floodplain is proposed. It is demonstrated that such a river system evolves from a meandering to an anabranching planform in periods of high flows that contribute to the formation of crevasse splays. The splay channels evolve then into new meandering flow paths that form ‘second‐order’ crevasses, avulsions and cutoffs. The efficiency of the flow is maintained by the formation of cutoffs and avulsions preventing the development of high sinuosity channels, and redirecting the flow to newly formed channels during maximum flow events. A comparison with other anabranching systems revealed that increased discharges and sediment loads are capable of forming anabranching planforms both in dryland and temperate climate zones. The sediment type available for transport, often inherited from older sedimentary environments, is an important variable determining whether the channel planform is anabranching, with actively migrating channels, or anastomosing, with stable, straight or sinuous branches. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
32.
曲阜市近山前地区基底地层是理想的热介质,区域主控断裂对地温场起明显控制作用,含水岩组和地下水运动为地热提供了理想载体。以岩石导热特征,可将曲阜地区地层分为2 大类:即热基底地层和热盖层地层。前者热导率为25.41×10-3~36.30×10-3T/cm·s·℃;后者为18.92×10-3~23.99×10-3 T/cm·s·℃。地热资源赋存于受断裂构造控制的槽形地带内,属典型的构造—盆地增温型。  相似文献   
33.
We use a hydrodynamic model applied to an idealized fan-shaped basin to explore the morphology and dynamics of radial sand ridges in a convergent coastal system. A positive morphological feedback between channel incision and flow redistribution is responsible for the formation of the channel-ridge pattern. The selection mechanism of bottom wavelength is associated with flow concentration in the deeper part of the channels. Our results are compared to sediment and hydraulic dynamics in the radial sand ridges (RSRs) in China. In a convergent, sloping basin the tangentially averaged tidal velocity peaks at 47 km from the apex. This distance is similar to the arc distance, 62 km, where the RSRs are most incised. An offshore shift in tidal phase results in stronger flows near the north coastline, explaining the presence of asymmetric channel patterns. A numerical stability analysis indicates that small radial oscillations with a wavelength of 10° to 15° maximize the velocity in the troughs. This oscillation wavelength also emerges in the RSRs, which display a peak in spectral energy at a radial wavelength between 25° to 37.5°. High-resolution numerical simulations in the RSRs confirm that flow concentration occurs in the deeper part of the channels, keeping them flushed. We therefore conclude that the RSRs display morphometric characteristics similar to other tidal incisions, like tidal inlets and intertidal channels. This result further supports the dominant role of tidal prism and related peak velocities in incising coastal landscapes. © 2020 John Wiley & Sons, Ltd.  相似文献   
34.
River deltas and associated turbidity current systems produce some of the largest and most rapid sediment accumulations on our planet. These systems bury globally significant volumes of organic carbon and determine the runout distance of potentially hazardous sediment flows and the shape of their deposits. Here we seek to understand the main factors that determine the morphology of turbidity current systems linked to deltas in fjords, and why some locations have well developed submarine channels while others do not. Deltas and associated turbidity current systems are analysed initially in five fjord systems from British Columbia in Canada, and then more widely. This provides the basis for a general classification of delta and turbidity current system types, where rivers enter relatively deep (>200 m) water. Fjord-delta area is found to be strongly bimodal. Avalanching of coarse-grained bedload delivered by steep mountainous rivers produces small Gilbert-type fan deltas, whose steep gradient (11°–25°) approaches the sediment's angle of repose. Bigger fjord-head deltas are associated with much larger and finer-grained rivers. These deltas have much lower gradients (1.5°–10°) that decrease offshore in a near exponential fashion. The lengths of turbidity current channels are highly variable, even in settings fed by rivers with similar discharges. This may be due to resetting of channel systems by delta-top channel avulsions or major offshore landslides, as well as the amount and rate of sediment supplied to the delta front by rivers. © 2018 John Wiley & Sons, Ltd.  相似文献   
35.
Numerous elongated mounds and channels were found at the top of the middle Miocene strata using 2D/3D seismic data in the Liwan Sag of Zhujiang River Mouth Basin(ZRMB) and the Beijiao Sag of Qiongdongnan Basin(QDNB). They occur at intervals and are rarely revealed by drilling wells in the deepwater areas. Origins of the mounds and channels are controversial and poorly understood. Based on an integrated analysis of the seismic attribute, palaeotectonics and palaeogeography, and drilling well encountering a mound, research results show that these mounds are dominantly distributed on the depression centres and/or slopes of the Liwan and Beijiao sags and developed in a bathyal sedimentary environment. In the Liwan and Beijiao sags, the mounds between channels(sub) parallel to one another are 1.0–1.5 km and 1.5–2.0 km wide, 150–300 m and 150–200 m high, and extend straightly from west to east for 5–15 km and 8–20 km, respectively. Mounds and channels in the Liwan Sag are parallel with the regional slope. Mounds and channels in the Beijiao Sag, however, are at a small angle to the regional slope. According to internal geometry, texture and external morphology of mounds, the mounds in Beijiao Sag are divided into weak amplitude parallel reflections(mound type I), blank or chaotic reflections(mound type II), and internal mounded reflections(mound type Ⅲ). The mounds in Liwan Sag, however, have the sole type, i.e., mound type I. Mound type I originates from the incision of bottom currents and/or gravity flows. Mound type II results from gravity-driven sediments such as turbidite. Mound type Ⅲ is a result of deposition and incision of bottom currents simultaneously. The channels with high amplitude between mounds in the Beijiao and Liwan sags are a result of gravity-flow sediments and it is suggested they are filled by sandstone.Whereas channels with low-mediate amplitudes are filled by bottom-current sediments only in the Beijiao Sag,where they are dominantly composed of mudstone. This study provides new insights into the origins of the mounds and channels worldwide.  相似文献   
36.
During the last 160 years, land-use changes in the Ozarks have had the potential to cause widespread, low-intensity delivery of excess amounts of gravel-sized sediment to stream channels. Previous studies have indicated that this excess gravel bedload is moving in wave-like forms through Ozarks drainage basins. The longitudinal, areal distribution of gravel bars along 160 km of the Current River, Missouri, was evaluated to determine the relative effects of valley-scale controls, tributary basin characteristics, and lagged sediment transport in creating areas of gravel accumulations. The longitudinal distribution of gravel-bar area shows a broad scale wave-like form with increases in gravel-bar area weakly associated with tributary junctions. Secondary peaks of gravel area with 1·8–4·1 km spacing (disturbance reaches) are superimposed on the broad form. Variations in valley width explain some, but not all, of the short-spacing variation in gravel-bar area. Among variables describing tributary drainage basin morphometry, present-day land use and geologic characteristics, only drainage area and road density relate even weakly to gravel-bar areal inventories. A simple, channel network-based sediment routing model shows that many of the features of the observed longitudinal gravel distribution can be replicated by uniform transport of sediment from widespread disturbances through a channel network. These results indicate that lagged sediment transport may have a dominant effect on the synoptic spatial distribution of gravel in Ozarks streams; present-day land uses are only weakly associated with present-day gravel inventories; and valley-scale characteristics have secondary controls on gravel accumulations in disturbance reaches. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   
37.
Low order channels comprise a large proportion of the links of every drainage basin, and are often at the centre of land management concerns. They exhibit hydrological and geomorphological characteristics atypical of higher order links. This paper examines the nature and causes of variations in the bed material texture of two streams on the Queen Charlotte Islands, British Columbia. The extant, functional exponential model is found to be inadequate for explaining observed changes in grain size parameters with distance downstream. Recurrent disruption of sediment transport by large organic debris jams, and the sporadic contamination of the fluvial sediment population by colluvial inputs, preclude the development of longitudinal structure. Rather, grain size varies erratically over short distances. A stochastic model best describes the observed variations, and should be adopted as an alternative to the exponential model in low order links. Characteristic variances are controlled by the degree of hillslope-channel coupling, and the extent and characteristics of non-alluvial storage mechanisms.  相似文献   
38.
Digital outcrop models help to constrain the interactions of stratigraphic and structural heterogeneity on ancient depositional systems. This study uses a stochastic approach that incorporates stratigraphic and structural modeling to interrogate the three-dimensional morphology of deep-water channel strata outcropping on Sierra del Toro in the Magallanes Basin of Chile. This approach considers the relative contributions, and associated uncertainty, of erosional downcutting versus post-depositional structural folding and small-offset faulting on the present-day configuration of the submarine channel complexes. Paleodepositional channel-belt gradients were modeled using a combination of three-dimensional visualization, stochastic surface modeling, palinspastic restoration, and decompaction modeling that are bound with errors constrained by stratigraphic and structural uncertainty. Modeling results indicate that at least 100 m of downcutting occurs over 6 km, and the resultant thalweg gradient of 64–125 m/km (decompacted) suggests that the Cerro Toro axial channel belt is an out-of-grade depositional system. Furthermore, the presence of steeper segments (100–175 m/km decompacted) suggests the preservation of one or more knickpoints that are similar in magnitude to tectonically-induced knickpoints on the modern seafloor. The interpreted knickpoints are correlated with a decreasing channel width-depth ratio and an increase of channel depth. These results indicate that stochastic surface modeling using digital outcrop models can constrain stratigraphic interpretations and post-depositional structural heterogeneity.  相似文献   
39.
To further develop prediction of the range of morphological adjustments associated with sediment pulses in bar‐pool channels, we analyze channel bed topographic data collected prior to and following the removal of two dams in Oregon: Marmot Dam on the Sandy River and Brownsville Dam on the Calapooia River. We hypothesize that, in gravel‐bed, bar‐pool channels, the response of bed relief to sand and gravel sediment pulses is a function of initial relief and pulse magnitude. Modest increases in sediment supply to initially low‐relief, sediment‐poor cross‐sections will increase bed relief and variance of bed relief via bar deposition. Modest increases in sediment supply to initially high‐relief cross‐sections, characteristic of alternate bar morphology, will result in decreased bed relief and variance of relief via deposition in bar‐adjacent pools. These hypothesized adjustments are measured in terms of bed relief, which we define as the difference in elevation between the pool‐bottom and bar‐top. We evaluate how relief varies with sediment thickness, where both relief and mean sediment thickness at a cross‐section are normalized by the 90th percentile of observed relief values within a reach prior to a sediment pulse. Field measurements generally supported the stated hypotheses, demonstrating how introduction of a sediment pulse to low‐relief reaches can increase mean and variance of relief, while introduction to high‐relief reaches can decrease the mean and variance of bed relief, at least temporarily. In general, at both sites, the degree of impact increased with the thickness of sediment delivered to the cross‐section. Results thus suggest that the analysis is a useful step for understanding the morphological effects of sediment pulses introduced to gravel‐bed, bar‐pool channels. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号