首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   262篇
  免费   32篇
  国内免费   39篇
测绘学   62篇
大气科学   49篇
地球物理   52篇
地质学   34篇
海洋学   36篇
天文学   1篇
综合类   14篇
自然地理   85篇
  2024年   1篇
  2023年   4篇
  2022年   11篇
  2021年   8篇
  2020年   9篇
  2019年   15篇
  2018年   10篇
  2017年   7篇
  2016年   20篇
  2015年   28篇
  2014年   25篇
  2013年   16篇
  2012年   16篇
  2011年   12篇
  2010年   21篇
  2009年   18篇
  2008年   17篇
  2007年   19篇
  2006年   11篇
  2005年   11篇
  2004年   11篇
  2003年   9篇
  2002年   4篇
  2001年   6篇
  2000年   5篇
  1999年   2篇
  1998年   4篇
  1997年   4篇
  1996年   2篇
  1995年   2篇
  1993年   1篇
  1992年   2篇
  1989年   1篇
  1982年   1篇
排序方式: 共有333条查询结果,搜索用时 31 毫秒
151.
杜鹤娟  柳钦火  李静  杨乐 《遥感学报》2013,17(6):1587-1611
光学遥感是目前反演植被叶面积指数LAI(Leaf Area Index)的主要手段,但是当叶面积指数较大时存在光学遥感信息饱和、反演精度显著降低的问题。叶面积指数和平均叶倾角对光学、微波波段范围内反射和散射特性都有重要影响,主要表现在植被结构参数的变化可以引起冠层孔隙率和消光截面大小的改变。本文以典型农作物玉米为例,通过构建统一的PROSAIL和MIMICS模型输入参数,生成一套玉米全生长期光学二向反射率和全极化微波后向散射系数模拟库和冠层参数库。通过对模拟数据与LAI敏感性和相关性分析得出:(1)光学植被指数MNDVI(800 nm,2000 nm),在LAI为0—3时敏感,基于MNDVI与LAI的回归模型可以估算LAI变化 0.4的情况,RMSE是0.33,R2是0.958。(2)微波植被指数SARSRVI(1.4 GHz HH,9.6 GHz HV),在LAI为3—6时敏感,基于SARSRVI与LAI的回归模型可以估算LAI变化1的情况,RMSE为0.22,R2是0.9839。研究表明,采用分段敏感的植被指数,协同光学和微波遥感反演玉米全生长期叶面积指数是可行的。  相似文献   
152.
The saltcedar leaf beetle (Diorhadha spp.) has shown promise as a biocontrol agent for saltcedar (Tamarix spp.) invasions in the USA. In Texas, natural resource managers need assistance in monitoring biological control of invasive saltcedars. This study describes application of a medium-format, digital camera acquiring natural colour imagery and global positioning system (GPS) and geographic information system (GIS) technologies to check biological control of saltcedar in west Texas. On 8 July and 8 September 2011, natural colour airborne digital imagery was collected along a 155.8?km transect covering portions of Presidio and Brewster counties of Texas. The camera was tethered to a GPS receiver that geotagged each image and saved the coordinates to a key-hole marked up language file that was viewable on Google Earth. Saltcedar trees exhibiting severe feeding damage and those that were totally defoliated were easily identified in the imagery. The former appeared in orange to brown colour tones; the latter exhibited grey colour tones. Point distribution maps showing locations of saltcedar trees exhibiting feeding damage were developed from GPS information in the GIS. Coordinate points on the map were linked to the corresponding image, permitting the user to have quick access to view imagery. The results of this study show a practical method for monitoring biological control of saltcedar.  相似文献   
153.
Broadband field spectra were assessed to discriminate invasive saltcedar (Tamarix spp.) trees exhibiting feeding damage caused by the saltcedar leaf beetle (Diorhadba spp.) from other land cover types. Data were collected at two study sites near Presidio, Texas in 2010 and 2011. Spectral bands evaluated were coastal blue (400–450?nm), blue (450–510?nm), green (510–580?nm), yellow (585–625?nm), red (630–690?nm), red-edge (705–745?nm), and near-infrared (770–895, 860–1040?nm). Data were evaluated with analysis of variance and Scheffe’s multiple comparison test (α?=?0.05). The red band generally separated severely damaged saltcedar trees from other land cover features. Near-infrared bands separated defoliated saltcedar trees. Broadband spectra has potential for distinguishing saltcedar trees exhibiting feeding damage caused by the saltcedar leaf beetle from other associated features, thus supporting future explorations of airborne and satellite-borne multispectral systems to monitor biological control of saltcedar within complex landscapes.  相似文献   
154.
Abstract

In this study, we tested whether GLS field symptoms on maize can be detected using hyperspectral data re-sampled to WorldView-2, Quickbird, RapidEye and Sentinel-2 resolutions. To achieve this objective, Random Forest algorithm was used to classify the 2013 re-sampled spectra to represent the three identified disease severity categories. Results showed that Sentinel-2, with 13 spectral bands, achieved the highest overall accuracy and kappa value of 84% and 0.76, respectively, while the WorldView-2, with eight spectral bands, yielded the second highest overall accuracy and kappa value of 82% and 0.73, respectively. Results also showed that the 705 and 710 nm red edge bands were the most valuable in detecting the GLS for Sentinel-2 and RapidEye, respectively. On the re-sampled WorldView 2 and Quickbird sensor resolutions, the respective 608 and 660 nm in the yellow and red bands were identified as the most valuable for discriminating all categories of infection.  相似文献   
155.
Abstract

Stable isotopes are powerful research tools in environmental sciences and their use in ecosystem research is increasing. Stable isotope measurements allow the study of evapotranspiration fluxes, soil evaporation and leaf transpiration phenomena. Soil water and leaf water are the sources of the evapotranspiration that transfers large quantities of water from land to the atmosphere; as a result the isotopic composition of water left in the leaves is modified towards enrichment. Evaporation also changes the isotopic composition of water bodies creating a natural isotopic signal. The isotopic identity of soil water affects the oxygen isotopic signature of leaf and stem water. In this paper we present the isotopic data of bulk leaf water, showing the enrichment in isotopic value of oxygen due to evapotranspiration from leaves in conjunction with the isotopic signal of rainwater and other environmental factors such as humidity and temperature. Results suggest that the variation in the values of δ18O of Eucalyptus citriodora, Dalbergia sissoo, Melia azedarach and Pinus roxburghii is due to the seasonal changes in the δ18O of the source water for plants, i. e. rain. It is further observed that leaf water δ18O values are depleted during the months of July, August and September. This occurs due to the following reasons: (a) the sampling areas receive about 50% of the average annual rain during these months, and (b) rainfalls during these months are isotopically depleted compared with winter rains.

Citation Butt, S., Ali, M., Fazil, M. & Latif, Z. (2010) Seasonal variations in the isotopic composition of leaf and stem water from an arid region of Southeast Asia. Hydrol. Sci. J. 55(5), 844–848.  相似文献   
156.
《自然地理学》2013,34(5):474-482
Our knowledge of winter leaf conductance and transpiration rates during the winter and early spring is especially weak for Pinus strobus L. (eastern white pine). Hence, the present study was conducted to: (1) measure and examine the winter leaf conductance and transpiration rates among 10 P. strobus trees to supply preliminary data for an understudied tree species; and (2) investigate whether observed leaf conductance and transpiration rates are large enough to merit incorporation into existing water balance models. The fieldwork was conducted at the Fair Hill Natural Resources Management Area in northeastern Maryland (39°42'N, 75°50'W) using a Li-Cor 1600M Steady State Porometer. Meteorological data were acquired from a continuously recording meteorological station on-site. Meteorological data were recorded at five-minute intervals to ensure that weather conditions could be temporally sequenced with porometer readings. The 10 co-occurring P. strobus sample trees were of similar age and health on uniform soils in an open field. Winter and early spring leaf conductance values of the selected trees reached 20 mmol m-2 s-1, whereas transpiration reached 0.13 mmol m-2 s-1. Results of the study indicate that there is statistically significant differences in leaf conductance rates among co-occurring P. strobus trees (H = 16.74, p = .05). Since the upper winter leaf conductance and transpiration rates measured in this study overlap with growing season leaf conductance and transpiration values reported by others, it is suggested that winter leaf conductance of and transpiration from P. strobus trees are significant enough to incorporate into water balance calculations.  相似文献   
157.
Native Nothofagus forests in the midlatitude region of the Andes Cordillera are notorious biodiversity hot spots, uniquely situated in the Southern Hemisphere such that they develop in snow‐dominated reaches of this mountain range. Spanning a smaller surface area than similar ecosystems, where forests and snow coexist in the Northern Hemisphere, the interaction between vegetation and snow processes in this ecotone has received lesser attention. We present the first systematic study of snow–vegetation interactions in the Nothofagus forests of the Southern Andes, focusing on how the interplay between interception and climate determines patterns of snow water equivalent (SWE) variability. The Valle Hermoso experimental catchment, located in the Nevados de Chillán vicinity, was fitted with eight snow depth sensors that provided continuous measurements at varying elevations, aspect, and forest cover. Also, manual measurements of snow properties were obtained during snow surveys conducted during end of winter and spring seasons for 3 years, between 2015 and 2017. Each year was characterized by distinct climatological conditions, with 2016 representing one of the driest winters on record in this region. Distance to canopy, leaf area index, and total gap area were measured at each observational site. A regression model was built on the basis of statistical analysis of local parameters to model snow interception in this kind of forest. We find that interception implied a 23.2% reduction in snow accumulation in forested sites compared with clearings. The interception in these deciduous trees represents, on average, 23.6% of total annual snowfall, reaching a maximum measured interception value of 13.8‐mm SWE for all snowfall events analysed in this research.  相似文献   
158.
Earth is always changing. Knowledge about where changes happened is the first step for us to understand how these changes affect our lives. In this paper, we use a long-term leaf area index data (LAI) to identify where changes happened and where has experienced the strongest change around the globe during 1981–2006. Results show that, over the past 26 years, LAI has generally increased at a rate of 0.0013 per year around the globe. The strongest increasing trend is around 0.0032 per year in the middle and northern high latitudes (north of 30°N). LAI has prominently increased in Europe, Siberia, Indian Peninsula, America and south Canada, South region of Sahara, southwest corner of Australia and Kgalagadi Basin; while noticeably decreased in Southeast Asia, southeastern China, central Africa, central and southern South America and arctic areas in North America.  相似文献   
159.
运用凋落物分解袋及样品室内分析的方法,研究了石漠化脆弱生态区植被恢复不同阶段主要建群种凋落叶分解及有机碳、氮释放动态及其与土壤团聚体有机碳、氮之间的关系。结果表明:(1)各植被恢复阶段凋落叶分解系数介于0.73~1.33之间,不同阶段之间表现为,草地<灌丛<乔木林<灌乔林,人工樟树林介于乔木林与灌乔林之间。(2)各植被恢复阶段凋落叶有机碳、氮净释放率介于58.5%~72.9%与21.2%~63.9%之间,有机碳在分解期间表现为净释放,有机碳、氮释放率随植被恢复年限的延长呈增加的趋势。(3)凋落叶分解与养分释放对土壤有机碳、氮含量的提高有促进作用。其中,凋落叶分解系数与0.25~1 mm、<0.25 mm粒径团聚体轻组有机碳、氮之间关系密切。在植被恢复过程中,凋落叶分解速率及有机碳、氮释放率随恢复年限延长而呈增加趋势,凋落叶分解对土壤有机碳、氮有重要影响,轻组有机碳、氮优先向小粒径团聚体输入,小粒径团聚体在土壤有机碳、氮积累中有重要作用。凋落叶分解一方面能为植物生长提供养分,同时也促进土壤有机质的形成与积累,植被恢复过程中应加强水土保持、提高土壤层的养分保蓄与抗水土流失能力。   相似文献   
160.
叶面积指数(LAI)是生态环境研究中一个关键的生物物理变量,是陆地植被能量交换的重要途径。基于多角度高光谱植被辐射传输理论,根据DART模型,将天顶角和方位角离散成61个方向组合,建立适于多角度高光谱遥感数据的叶面积指数反演查找表;选取长白山地区高光谱多角度PROBA/CHRIS遥感数据,在进行HRIS数据预处理的基础上,利用最小二乘原理进行CHRIS数据与LAI查找表匹配,反演研究区的LAI;并对490 nm和700 nm波长在不同LAI和61个离散方向的BRDF敏感性因子进行评价分析:随着LAI值的增大,490 nm波长的BRDF值先增大后减小, 700 nm波长的BRDF值减小;BRDF值沿天顶角增大的方向下降,在天顶附近时值为最小。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号