首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   107篇
  免费   6篇
  国内免费   17篇
大气科学   21篇
地球物理   17篇
地质学   5篇
海洋学   77篇
自然地理   10篇
  2023年   1篇
  2021年   3篇
  2020年   3篇
  2019年   2篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   3篇
  2014年   4篇
  2013年   6篇
  2012年   3篇
  2011年   5篇
  2009年   5篇
  2008年   8篇
  2007年   13篇
  2006年   4篇
  2005年   8篇
  2004年   10篇
  2003年   9篇
  2002年   11篇
  2001年   8篇
  2000年   3篇
  1999年   6篇
  1998年   4篇
  1997年   2篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1988年   1篇
排序方式: 共有130条查询结果,搜索用时 250 毫秒
81.
This is the first study to investigate the magnitude and distribution of N2O concentrations along the Line P oceanographic transect in the Northeast (NE) subarctic Pacific Ocean. Concentrations of N2O were measured from the surface to 600 m depth at five stations between 126°W and 145°W. Although nitrification within the mixed layer may produce some N2O, we conclude that mixing and diffusion processes, which vertically transport N2O upwards from below the mixed layer, are the primary sources of N2O to the surface waters of the NE subarctic Pacific Ocean. Below the mixed layer, nitrification appears to be the dominant source of N2O, and based on correlations of excess N2O (ΔN2O) versus apparent oxygen utilization and NO3 ? concentrations, we estimated that the N2O yield from nitrification was approximately 0.028 to 0.040%. The longitudinal distributions of N2O concentrations below the mixed layer were variable and we consider the potential role that different transiting water masses may play in contributing to this variability. Finally, we estimated that the regional average sea-to-air N2O flux was 4.37 mol of N2O km?2 d?1, a value which is approximately four times that of the global average seawater-to-air flux rate. Our N2O yield estimates are within the range of those expected under oxic conditions, leading us to conclude that decreasing dissolved O2 concentrations in the NE subarctic Pacific Ocean, and the water masses that influence this region, over the past 50 years have yet to produce a substantial increase in N2O production. Given the expectation that dissolved O2 concentrations in the subarctic Pacific Ocean will continue to decrease during this century, this study has provided an important baseline from which future studies will be able to track changes in seawater N2O concentrations and fluxes to the atmosphere.

[Traduit par la rédaction] La présente étude est la première à s'intéresser à la valeur et à la distribution des concentrations de N2O le long du transect océanographique de la ligne P dans le Pacifique Nord-Est subarctique. Les concentrations de N2O ont été mesurées de la surface jusqu’à une profondeur de 600 m à cinq stations entre 126°O et 145°O. Bien que la nitrification à l'intérieur de la couche de mélange puisse produire du N2O, nous concluons que le mélange et les processus de diffusion, qui transportent verticalement le N2O vers le haut à partir d'en dessous de la couche de mélange, sont les sources principales de N2O pour les eaux de surface du Pacifique Nord-Est subarctique. En dessous de la couche mélange, la nitrification semble être la principale source de N2O, et d'après les corrélations de l'excès de N2O (ΔN2O) par rapport à l'utilisation apparente d'oxygène et aux concentrations de NO3 ?, nous avons estimé que le rendement en N2O de la nitrification était approximativement de 0,028 à 0,040%. Les distributions longitudinales des concentrations de N2O en dessous de la couche de mélange étaient variables et nous considérons le rôle possible que des différentes masses d'eau transitoires peuvent avoir à jouer dans cette variabilité. Finalement, nous avons estimé que la moyenne régionale du flux mer–air de N2O était de 4,37 moles de N2O km?2 j?1, une valeur qui est environ quatre fois celle du taux planétaire moyen du flux eau de mer–air. Nos estimations du rendement en N2O sont de l'ordre de celles attendues dans des conditions oxyques, ce qui nous amène à conclure que la diminution des concentrations d'oxygène dissout dans le Pacifique Nord–Est subarctique, et dans les masses d'eau qui influencent cette région, au cours des cinquante dernières années ont encore à produire une augmentation substantielle de production de N2O. Étant donné qu'on s'attend à ce que les concentrations d'oxygène dissout dans le Pacifique subarctique continuent à diminuer durant le présent siècle, cette étude a fourni une importante base de référence à partir de laquelle de futures études pourront suivre les changements dans les concentrations de N2O dans l'eau de mer et dans ses flux vers l'atmosphère.  相似文献   
82.
季风涡旋影响西北太平洋台风生成初步分析   总被引:2,自引:1,他引:1       下载免费PDF全文
西北太平洋对流层低层大尺度低频环流季风涡旋与台风生成有密切的关系。利用时间滤波方法将季风涡旋和台风环流从逐日台风风场中分离出来,对两次季风涡旋活动个例分析发现,气旋初始扰动都首先出现在季风涡旋中心东部,一次季风涡旋活动可以伴随着一个或几个热带气旋的生成。通过进一步分析2000—2009年季风涡旋活动与热带气旋的生成关系发现,虽然季风涡旋的定义与环流强度和持续时间有关,但是热带气旋的生成位置大多数分布在季风涡旋的中心和东部,这可能与季风涡旋的Rossby波能量频散有关。  相似文献   
83.
Monsoon gyres have been identified as one of the important large-scale circulation patterns associated with tropical cyclone (TC) formation in the western North Pacific.A recent observational analysis indicated that most TCs form near the center of monsoon gyres or at the northeast end of the enhanced low-level southwesterly flows on the southeast-east periphery of monsoon gyres.In the present reported study,idealized numerical experiments were conducted to examine the tropical cyclogenesis associated with Rossby wave energy dispersion with an initial idealized monsoon gyre.The numerical simulations showed that the development of the low-level enhanced southwesterly flows on the southeasteast periphery of monsoon gyres can be induced by Rossby wave energy dispersion.Mesoscale convective systems emerged from the northeast end of the enhanced southwesterly flows with mid-level maximum relative vorticity.The simulated TC formed in the northeast of the monsoon gyre and moved westward towards the center of the monsoon gyre.The numerical experiment with a relatively smaller sized initial monsoon gyre showed the TC forming near the center of the initial monsoon gyre.The results of the present study suggest that Rossby wave energy dispersion can play an important role in TC formation in the presence of monsoon gyres.  相似文献   
84.
Wind data from NCEP and hydrographic data obtained from August 28 to September 10, 1994 have been used to compute circulation in the northern South China Sea and near Luzon Strait using three-dimensional diagnostic models with a modified inverse method. The numerical results are as follows: the main Kuroshio is located above 400 m levels near Taiwan’s eastern coast and above 800 m levels away from it. Near Luzon Strait above 400 m levels a branch of the Kuroshio joins with a part of the northward current, which comes from an area west of Luzon’s western coast and intrudes northwestward, then it branchs into western and eastern parts near 20°30′ N. The eastern part flows northward into an area east of Taiwan, while its western part continues to intrude northwestward, flowing through an area southwest of Taiwan. Net westward intruded volume transport through longitude Section AB at 121°00′ E from 19°00′ N to 21° 43′ N is about 3.5 × 106 m3s−1 in a layer above 400 m levels. The anticyclonic eddies W1 and W3 exist above 700 m levels east of Dongsha Islands and below 200 m levels in the eastern part of the region, respectively. The circulation in the middle region is dominated mainly by a basin-scale cyclonic gyre, and consists of three cyclonic eddies. Strong upwelling occurs in the middle region. The joint effect of baroclinity and relief and interaction between wind stress and relief both are important for real forcing of flow across contours of fH −1 in effecting the circulation pattern.  相似文献   
85.
The annual subduction rate of the North Pacific was calculated based on isopycnally averaged hydrographic climatology (HydroBase), high-resolution winter mixed-layer climatology (NWMLC), and various wind stress climatologies from ship reports, numerical weather prediction products, and satellite products. The calculation was performed using Lagrangian coordinates in the same manner as in previous works, except a less smoothed oceanic climatology (HydroBase and NWMLC) was used instead of a World Ocean Atlas. Differences in the wind stress climatologies have very little effect on subduction rate estimates. The subduction rate census for density classes showed peaks corresponding to subtropical mode water (STMW), central mode water (CMW), and eastern subtropical mode water (ESTMW). The deeper mixed layer and the associated sharper mixed-layer fronts in the present climatology resulted in a larger lateral induction, which boosted the subduction rate, especially for the potential density anomaly (σθ) range of the lighter STMW (25.0 < σθ < 25.2 kg m−3) and lighter CMW (26.0 < σθ < 26.2 kg m−3), compared to previous estimates. The renewal time of permanent pycnocline water was estimated as the volume of water divided by the subduction rate for each σθ class: 2–4 years for ESTMW (24.5 < σθ < 25.2 kg m−3), 2 years for the lighter STMW (25.0 < σθ < 25.3 kg m−3), 5–9 years for the denser STMW (25.3 < σθ < 25.6 kg m−3), 10–20 years for the lighter CMW (26.0 < σθ < 26.2 kg m−3), 20–30 years for the middle CMW (26.2 < σθ < 26.3 kg m−3), and 60 years or longer for the denser CMW (26.3 < σθ < 26.6 kg m−3). A comparison of the water volume and subduction rate in potential temperature–salinity (θS) space indicated that the upper permanent pycnocline water (25.0 < σθ < 26.2 kg m−3) was directly maintained by nondiffusive subduction of winter surface water, including STMW and lighter CMW. The lower permanent pycnocline water (26.2 < σθ < 26.6 kg m−3) may be maintained through the subduction of fresher and colder water from the subarctic–subtropical transition region and subsequent mixing with saltier and warmer water. Diagnosis of the potential vorticity (PV) of the subducted water demonstrated that the low PV of STMW was mainly due to the large subduction rate, whereas that of both ESTMW and CMW was due mainly to the small density advection rate (cross-isopycnal flow). Additionally, a relatively large subduction rate probably contributes to the low PV of part of the lighter CMW (ESTMW) formed in the region around 38°N and 170°W (28°N and 145°W), which is characterized by a relatively thick winter mixed layer and an associated mixed-layer front, causing a large lateral induction rate.  相似文献   
86.
By analyzing the results of a realistic ocean general circulation model (OGCM) and conducting a series of idealized OGCM experiments, the dynamics of the Kuroshio Current System is examined. In the realistic configuration, the Kuroshio Current System is successfully simulated when the horizontal resolution of OGCMs is increased from 1/2° to 1/10°. The difference between the two experiments shows a jet, the model’s Kuroshio Extension, and a pair of cyclonic and anticyclonic, “relative,” recirculation gyres (RRGs) on the northern and southern flanks of the jet. We call them recirculation gyres because they share some features with ordinary recirculation gyres in previous studies, and we add the adjective “relative” to emphasize that they may not be apparent in the total field. Similar zonal jet and RRGs are obtained also in the idealized model with a rectangular basin and a flat bottom with a horizontal resolution of 1/6°. The northern RRG is generated by the injection of high potential vorticity (PV) created in the viscous sublayer of the western boundary current, indicating the importance of a no-slip boundary condition. Since there is no streamline with such high PV in the Sverdrup interior, the eastward current in the northern RRG region has to lose its PV anomaly by viscosity before connecting to the interior. In the setup stage this injection of high PV is carried out by many eddies generated from the instability of the western boundary current. This high PV generates the northern RRG, which induces the separation of the western boundary current and the formation of the zonal jet. In the equilibrium state, the anomalous high PV values created in the viscous sublayer are carried eastward in the northern flank of the zonal jet. The southern RRG is due to the classical Rhines–Young mechanism, where low PV values are advected northward within the western boundary inertial sublayer, and closed, PV-conserving streamlines form to the south of the Kuroshio Extension, allowing slow homogenization of the low PV anomalies. The westward-flowing southern branch of this southern RRG stabilizes the inertial western boundary current and prevents its separation in the northern half of the Sverdrup subtropical gyre, where the western boundary current is unstable without the stabilizing effect of the southern RRG. Therefore, in the equilibrium state, the southern RRG should be located just to the north of the center of the Sverdrup subtropical gyre, which is defined as the latitude of the Sverdrup streamfunction maximum. The zonal jet (the Kuroshio Extension) and the northern RRG gyre are formed to the north of the southern RRG. This is our central result. This hypothesis is confirmed by a series of sensitivity experiments where the location of the center of the Sverdrup subtropical gyre is changed without changing the boundaries of the subtropical gyre. The locations of the zonal jets in the observed Kuroshio Current System and Gulf Stream are consistent as well. Sensitivities of the model Kuroshio Current System are also discussed with regard to the horizontal viscosity, strength of the wind stress, and coastline.  相似文献   
87.
A comparison of plastic and plankton in the north Pacific central gyre   总被引:4,自引:0,他引:4  
The potential for ingestion of plastic particles by open ocean filter feeders was assessed by measuring the relative abundance and mass of neustonic plastic and zooplankton in surface waters under the central atmospheric high-pressure cells of the North Pacific Ocean. Neuston samples were collected at 11 random sites, using a manta trawl lined with 333 u mesh. The abundance and mass of neustonic plastic was the largest recorded anywhere in the Pacific Ocean at 334 271 pieces km2 and 5114 g km2, respectively. Plankton abundance was approximately five times higher than that of plastic, but the mass of plastic was approximately six times that of plankton. The most frequently sampled types of identifiable plastic were thin films, polypropylene/monofilament line and unidentified plastic, most of which were miscellaneous fragments. Cumulatively, these three types accounted for 98% of the total number of plastic pieces.  相似文献   
88.
Aeolian sand transport during winter and the snow-free season was assessed quantitatively by direct year-round field measurements along transects on the lee side of parabolic dunes in subarctic Québec. In 1987–1988, niveo-aeolian deposition was more important than aeolian sedimentation in three of the four study sites, and contributed > 75% of the total annual accumulation in exposed sites and < 25% in protected forest sites. The maximum depth of interstratified snow and sand deposits (3.5 m) was recorded in March. Semi-permanent snow lenses may persist longer than 2 years in the aeolian sediments. After dissipation of snow, 22 cm of sand (as a maximum) accumulated on the slipface of the most active dunes, whereas only minor sand accumulation occurred in distant areas from active sand erosion. Wind-driven sand was dispersed over 7.4 km2 in the Whapmagoostui-Kuujjuarapik area. The acumulation of snow and sand during the snow season, together with spring thaw and collapse of the niveo-aeolian deposit, caused different types of injuries to trees, especially in 1985 and 1987 when a maximum of torn branches was recorded over the last 10 year period.  相似文献   
89.
Time-dependent wind-driven circulation in the subarctic north Pacific is investigated by using Topex/Poseidon (T/P) altimeter data and European Centre for Medium-Range Weather Forecasts (ECMWF) wind data for about 6 years. The first empirical orthogonal function (EOF) of the T/Pderived sea level anomaly (SLA) without the variation related to the steric height change (SLA1) and the first EOF of the ECMWF-based wind stress curl fields represent basin-sized south-north oscillations and their time series agree well with a correlation of 0.49. They appear to express the spin-up and spin-down of the subarctic gyre. The third EOF of SLA (SLA3) and the second EOF of the wind stress curl are also related to the variation of the subarctic gyre. Though the correlation of their time series is 0.27, drastic changes in early winter coincide well. The two EOF pairs can be considered to mean that the SLA variation followed by the latitudinal migration of the Aleutian low is separated into two standing oscillation patterns, that is, the sea level variation combined with SLA1 and SLA3 expresses seasonal variations of the wind-driven circulation of the subarctic gyre. The interannual SLAs constructed by subtracting the SLA1 and SLA3 components clearly show trans-pacific westward propagation even in the high-latitudes. The time series of SLA1 is in agreement with that ofin situ SLAs measured with the tide gauge at Petropavlovsk (53-01N, 158-38E), which implies the possibility to monitor the subarctic circulation using tide gauge data.  相似文献   
90.
Responses to recent climatic changes in the sediment of subarctic Lake Saanajärvi in northwestern Finnish Lapland are studied by comparison of various biological and sedimentological proxies with the 200-year long climate record, specifically reconstructed for the site using a data-set of European-wide meteorological data. The multi-proxy evidence of simultaneously changing diatom, Cladocera, and chrysophyte assemblages along with the increased rates of organic matter accumulation and pigment concentrations suggest that the lake has undergone a distinct typological change starting from the turn of the 20th century. This change, indicating an increase in lake productivity, parallels a pronounced rise in the meteorologically reconstructed mean annual and summer temperatures in the region between ca. 1850 and 1930's. We postulate that, during the Little Ice Age, the lake was not, or was only weakly, thermally stratified during summer, whereas the subsequent increase in air and hence epilimnetic water temperatures resulted in the development of the present summer stratification. The increased thermal stability of the lake created more suitable conditions for the growth of phyto- and zooplankton and changed the overall primary production from benthos to plankton. Mineral magnetic and carbonaceous particle records suggest long-distance pollution, particularly since the 1920's, yet the observed changes in lake biota and productivity can hardly be explained by this very minor background pollution; the 20th century species configurations are typical of neutral waters and do not indicate any response to pollution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号