首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   348篇
  免费   52篇
  国内免费   39篇
测绘学   3篇
大气科学   3篇
地球物理   128篇
地质学   140篇
海洋学   126篇
天文学   1篇
综合类   9篇
自然地理   29篇
  2024年   1篇
  2023年   3篇
  2022年   3篇
  2021年   8篇
  2020年   25篇
  2019年   20篇
  2018年   11篇
  2017年   11篇
  2016年   17篇
  2015年   15篇
  2014年   10篇
  2013年   27篇
  2012年   20篇
  2011年   12篇
  2010年   15篇
  2009年   23篇
  2008年   27篇
  2007年   33篇
  2006年   23篇
  2005年   38篇
  2004年   11篇
  2003年   9篇
  2002年   7篇
  2001年   5篇
  2000年   5篇
  1999年   3篇
  1998年   7篇
  1997年   6篇
  1995年   17篇
  1994年   2篇
  1993年   2篇
  1992年   4篇
  1991年   8篇
  1990年   2篇
  1989年   1篇
  1988年   8篇
排序方式: 共有439条查询结果,搜索用时 15 毫秒
131.
Tsunami run-up height is a significant parameter for dimemsions of coastal structures.In the present study,tsunami run-up heights are estimated by three different Artificial Neural Network (ANN) models,i.e.Feed Forward Back Propagation (FFBP),Radial Basis Functions (RBF) and Generalized Regression Neural Network (GRNN).As the input for the ANN configuration,the wave height (H) values are employed.It is shown that the tsunami run-up height values are closely approximated with all of the applied ANN methods.The ANN estimations are slightly superior to those of the empirical equation.It can he seen that the ANN applications are especially significant in the absence of adequate number of laboratory experiments.The restdts also prove that the available experiment data set can he extended with ANN simulations.This may be helpful to decrease the burden of the experimental studies and to supply results for comparisons.  相似文献   
132.
浙江沿海潜在区域地震海啸风险分析   总被引:1,自引:2,他引:1  
采用COMCOT海啸模型建立三重网格模型模拟了2011年3月11日日本东北部9.0级地震引发的海啸发生、发展以及在我国东南沿海传播过程。震源附近浮标站以及浙江沿海的潮位站实测资料验证结果显示,大部分监测站首波到达时间和海啸波的计算值相差在15%以内,表明模型可较好的模拟海啸在计算域内的传播过程。研究表明日本南海海槽、冲绳海槽以及琉球海沟南部是影响浙江沿海主要的区域潜在震源,通过情景计算分别模拟3个潜在震源9.1级、8.0级和8.7级地震引发的海啸对浙江沿海的海啸风险,计算结果表明,海啸波产生后可在3~8h内传至浙江省沿岸,海啸波达1~3m,最大可达4m,此时浙江沿岸面临Ⅲ~Ⅳ级海啸风险,达到淹没至严重淹没等级。  相似文献   
133.
Abdul Hayir   《Ocean Engineering》2003,30(18):2329-2342
In this study, the motion of a submarine block slide, with variable velocities, and its effects on the near-field tsunami amplitudes are investigated. The numerical results show that the amplitudes generated by the slide are almost the same as those created by its average velocity when , where is average velocity of the slide and is the long period tsunami velocity in ocean of constant depth h. In contrast, the kinematic model of the slide must take into account time variations in the moving velocity, if , especially when .  相似文献   
134.
In this paper the geographical information system (GIS) is applied to earthquake and tsunami emergency work and an earthquake and tsunami emergency command system (ETECS) for seaside cities is developed which is composed of a basic database and six subsystems. By employing this system, the responsible municipal departments can make rapid prediction before the occurrence of earthquake or tsunami, make commanding decisions concerning the disaster-fight during the disastrous event, and make rapid estimates of the casualties and economic losses. So that the government could conduct relief work in time and planning for future disaster reduction and prevention.  相似文献   
135.
Tsunami deposits have been found at more than 60 sites along the Cascadia margin of Western North America, and here we review and synthesize their distribution and sedimentary characteristics based on the published record. Cascadia tsunami deposits are best preserved, and most easily identified, in low-energy coastal environments such as tidal marshes, back-barrier marshes and coastal lakes where they occur as anomalous layers of sand within peat and mud. They extend up to a kilometer inland in open coastal settings and several kilometers up river valleys. They are distinguished from other sediments by a combination of sedimentary character and stratigraphic context. Recurrence intervals range from 300–1000 years with an average of 500–600 years. The tsunami deposits have been used to help evaluate and mitigate tsunami hazards in Cascadia. They show that the Cascadia subduction zone is prone to great earthquakes that generate large tsunamis. The inclusion of tsunami deposits on inundation maps, used in conjunction with results from inundation models, allows a more accurate assessment of areas subject to tsunami inundation. The application of sediment transport models can help estimate tsunami flow velocity and wave height, parameters which are necessary to help establish evacuation routes and plan development in tsunami prone areas.  相似文献   
136.
Sea level measurements along the southeastern Brazilian coast, between 20° S and 30° S, show the effect of the Sumatra Tsunami of December 26, 2004. Two records from stations, one located inside an estuary and other inside a bay, shows oscillations of about 0.20 m range; one additional record from a station facing the open sea shows up to 1.2 m range oscillations. These oscillations have around 45 min period, starting 20–22 h after the Sumatra earthquake in the Indian Ocean (00:59 UTC) and lasting for 2 days. A computer modelling of the event reproduces the time of arrival of long shallow-water tsunami waves at the southeastern Brazilian coast but with slight longer period and amplitudes smaller than observed at the coast, probably due to its coarse resolution (1/4 of a degree). The high amplitudes observed at the coast suggest a mechanism of amplification of these waves over the southeastern Brazilian shelf.  相似文献   
137.
The tsunami of 2004 in the Indian Ocean transported thousands of meters-long boulders shoreward at Pakarang Cape, Thailand. We investigated size, position and long axis orientation of 467 boulders at the cape. Most of boulders found at the cape are well rounded, ellipsoid in shape, without sharp broken edges. They were fragments of reef rocks and their sizes were estimated to be < 14m3 (22.7t). The distribution pattern and orientation of long axis of boulders reflect the inundation pattern and behavior of the tsunami waves. It was found that there is no clear evidence indicating monotonous fine/coarse shoreward trends of these boulders along each transect line. On the other hand, the large boulders were deposited repeatedly along the three arcuate lines at the intertidal zone with a spacing of approximately 136m interval. This distribution pattern may suggest that long-lasting oscillatory flows might have repositioned the boulders and separated the big ones from small. No boulders were found on land, indicating that the hydraulic force of the tsunami wave rapidly dissipated on reaching the land due to the higher bottom friction and the presence of a steep slope. We further conducted numerical calculation of tsunami inundation at Pakarang Cape. According to the calculation, the sea receded and the major part of the tidal bench (area with boulders at present) was exposed above the sea surface before the arrival of the first tsunami wave. The first tsunami wave arrived at the cape from west to east at approximately 130min after the tsunami generation, and then inundated inlands. Our calculation shows that tsunami wave was focused around the offshore by a small cove at the reef edge and spread afterwards in a fan-like shape on the tidal bench. The critical wave velocities necessary to move the largest and average-size boulders by sliding can be estimated to be approximately 3.2 and 2.0m/s, respectively. The numerical result indicates that the maximum current velocity of the first tsunami wave was estimated to be from 8 to 15m/s between the reef edge and approximately 500m further offshore. This range is large enough for moving even the largest boulder shoreward. These suggest that the tsunami waves that were directed eastward, struck the reef rocks and coral colonies, originally located on the shallow sea bottom near the reef edge, and detached and transported the boulders shoreward.  相似文献   
138.
The December 26, 2004 Sumatra-Andaman earthquake that registered a moment magnitude (Mw) of 9.1 was one of the largest earthquakes in the world since 1900. The devastating tsunami that resulted from this earthquake caused more casualties than any previously reported tsunami. The number of fatalities and missing persons in the most seriously affected countries were Indonesia - 167,736, Sri Lanka - 35,322, India - 18,045 and Thailand - 8,212. This paper describes two field visits to assess tsunami effects in Sri Lanka by a combined team of Japanese and Sri Lankan researchers. The first field visit from December 30, 2004 – January 04, 2005 covered the western and southern coasts of Sri Lanka including the cities of Moratuwa, Beruwala, Bentota, Pereliya, Hikkaduwa, Galle, Talpe, Matara, Tangalla and Hambantota. The objectives of the first field visit were to investigate the damage caused by the tsunami and to obtain eyewitness information about wave arrival times. The second field visit from March 10–18, 2005 covered the eastern and southern coasts of Sri Lanka and included Trincomalee, Batticaloa, Arugam Bay, Yala National Park and Kirinda. The objectives of the second visit were mainly to obtain eyewitness information about wave arrival times and inundation data, and to take relevant measurements using GPS instruments.  相似文献   
139.
The present study focuses on evaluation of the maximum and minimum water levels caused by tsunamis as risk factors for operation and management at nuclear power facilities along the coastal area of Japan. Tsunamis generated by submarine earthquakes are examined, basing literature reviews and databases of information on historical tsunami events and run-up heights. For simulation of water level along the coast, a numerical calculation system should be designed with computational regions covering a particular site. Also the calculation system should be verified by comparison of historical and calculated tsunami heights. At the beginning of the tsunami assessment, the standard faults, their locations, mechanisms and maximum magnitudes should be carefully estimated by considering historical earthquake-induced tsunamis and seismo-tectonics at each area. Secondly, the range of errors in the model parameters should be considered since earthquakes and tsunamis are natural phenomena that involve natural variability as well as errors in estimating parameters. For these reasons, uncertainty-induced errors should be taken into account in the process of tsunami assessment with parametric study of the tsunami source model. The element tsunamis calculated by the standard fault models with the errors would be given for the design. Then, the design tsunami can be selected among the element tsunamis with the most significant impact, maximum and minimum water levels, on the site, bearing in mind the possible errors in the numerical calculation system. Finally, the design tsunami is verified by comparison with the run-up heights of historical tsunamis, ensuring that the design tsunami is selected as the highest of all historical and possible future tsunamis at the site.  相似文献   
140.
Tsunami and its Hazard in the Indian and Pacific Oceans: Introduction   总被引:1,自引:0,他引:1  
The 2004 Indian Ocean tsunami caused an estimated 230,000 casualties, the worst tsunami disaster in history. A similar-sized tsunami in the Pacific Ocean, generated by the 1960 Chilean earthquake, commenced international collaborations on tsunami warning systems, and in the tsunami research community through the Tsunami Commission of International Union of Geodesy and Geophysics. The IUGG Tsunami Commission, established in 1960, has been holding the biannual International Tsunami Symposium (ITS). This volume contains selected papers mostly presented at the 22nd ITS, held in the summer of 2005. This introduction briefly summarizes the progress of tsunami and earthquake research as well as international cooperation on tsunami warning systems and the impact of the 2004 tsunami. Brief summaries of each paper are also presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号