首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7110篇
  免费   1536篇
  国内免费   3073篇
测绘学   73篇
大气科学   860篇
地球物理   2995篇
地质学   5483篇
海洋学   1044篇
天文学   320篇
综合类   401篇
自然地理   543篇
  2024年   21篇
  2023年   100篇
  2022年   205篇
  2021年   220篇
  2020年   303篇
  2019年   422篇
  2018年   353篇
  2017年   296篇
  2016年   392篇
  2015年   387篇
  2014年   449篇
  2013年   611篇
  2012年   477篇
  2011年   517篇
  2010年   463篇
  2009年   563篇
  2008年   515篇
  2007年   599篇
  2006年   601篇
  2005年   458篇
  2004年   457篇
  2003年   394篇
  2002年   324篇
  2001年   277篇
  2000年   318篇
  1999年   294篇
  1998年   252篇
  1997年   240篇
  1996年   235篇
  1995年   177篇
  1994年   182篇
  1993年   134篇
  1992年   127篇
  1991年   74篇
  1990年   74篇
  1989年   60篇
  1988年   36篇
  1987年   30篇
  1986年   16篇
  1985年   14篇
  1984年   13篇
  1983年   6篇
  1982年   4篇
  1981年   3篇
  1979年   8篇
  1977年   9篇
  1974年   1篇
  1954年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
Evidence is presented of a lateral variation in differential stress during metamorphism along a regional metamorphic belt on the basis of the proportion of microboudinaged piemontite grains (p) in a quartz matrix in metacherts. It is proposed that p is a practical indicator of relative differential stress. Analysis of 123 metacherts from the 800 km long Sambagawa metamorphic belt, Japan, reveals that p‐values range from < 0.01 to 0.7 in this region. Most samples from Wakayama in the mid‐belt area have p‐values of 0.4–0.6, whereas those from western Shikoku have p‐values of < 0.1. This difference cannot be explained by variations in metamorphic temperature, and is instead attributed to a regional, lateral variation in differential stress during metamorphism.  相似文献   
22.
We present numerical investigations into the formation of massive stars from turbulent cores of density structure  ρ∝ r −1.5  . The results of five hydrodynamical simulations are described, following the collapse of the core, fragmentation and the formation of small clusters of protostars. We generate two different initial turbulent velocity fields corresponding to power-law spectra   P ∝ k −4  and   P ∝ k −3.5  , and we apply two different initial core radii. Calculations are included for both completely isothermal collapse, and a non-isothermal equation of state above a critical density  (10−14 g cm−3)  . Our calculations reveal the preference of fragmentation over monolithic star formation in turbulent cores. Fragmentation was prevalent in all the isothermal cases. Although disc fragmentation was largely suppressed in the non-isothermal runs due to the small dynamic range between the initial density and the critical density, our results show that some fragmentation still persisted. This is inconsistent with previous suggestions that turbulent cores result in the formation of a single massive star. We conclude that turbulence cannot be measured as an isotropic pressure term.  相似文献   
23.
This paper presents a numerical model for predicting the dynamic response of rock mass subjected to large‐scale underground explosion. The model is calibrated against data obtained from large‐scale field tests. The Hugoniot equation of state for rock mass is adopted to calculate the pressure as a function of mass density. A piecewise linear Drucker–Prager strength criterion including the strain rate effect is employed to model the rock mass behaviour subjected to blast loading. A double scalar damage model accounting for both the compression and tension damage is introduced to simulate the damage zone around the charge chamber caused by blast loading. The model is incorporated into Autodyn3D through its user subroutines. The numerical model is then used to predict the dynamic response of rock mass, in terms of the peak particle velocity (PPV) and peak particle acceleration (PPA) attenuation laws, the damage zone, the particle velocity time histories and their frequency contents for large‐scale underground explosion tests. The computed results are found in good agreement with the field measured data; hence, the proposed model is proven to be adequate for simulating the dynamic response of rock mass subjected to large‐scale underground explosion. Extended numerical analyses indicate that, apart from the charge loading density, the stress wave intensity is also affected, but to a lesser extent, by the charge weight and the charge chamber geometry for large‐scale underground explosions. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
24.
25.
In this paper the second order characteristic (discontinuous bifurcation) condition is derived for the granular flow (fully plastic) equations. This second order bifurcation equation is shown to be formally identical to the first order localization requirement during steady elastoplastic deformation provided the elastic compliance tensor is substituted for the product of the plastic multiplier with the flow Hessian. For isotropic yield and flow functions the invariant form of the characteristic condition is given in detail, as well as an alternative expression in adapted co‐ordinates. The characteristic condition can be regarded as defining a hardening function which is maximized to identify the critical angles. When the method is applied to 3D Coulomb flow, Mohr's 3D fracture plane conditions are obtained uniquely. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
26.
27.
28.
29.
The influence of emergent and submerged macrophytes on flow velocity and turbulence production is demonstrated in a 140 m reach of the River Blackwater in Farnborough, Hampshire, UK. Macrophyte growth occurs in patches and is dominated by Sparganium erectum and Sparganium emersum. In May 2001, patches of S. erectum were already established and occupied 18% of the channel area. The flow adjusted to these (predominantly lateral) patches by being channelled through a narrower cross‐section. The measured velocity profiles showed a logarithmic form, with deviations attributable to topographic control. The channel bed was the main source of turbulence. In September 2001, in‐stream macrophytes occupied 27% of the channel, and overhanging bank vegetation affected 32% of the area. Overall flow resistance, described by Manning's n, showed a threefold increase that could be attributed to the growth of S. emersum in the middle of the channel. Velocity profiles showed different characteristic forms depending on their position relative to plant stems and leaves. The overall velocity field had a three‐dimensional structure. Turbulence intensities were generally higher and turbulence profiles tended to mirror the velocity profiles. Evidence for the generation of coherent eddies was provided by ratios of the root mean square velocities. Spectral analysis identified deviations from the Kolmogorov ?5/3 power law and provided statistical evidence for a spectral short‐cut, indicative of additional turbulence production. This was most marked for the submerged vegetation and, in some instances, the overhanging bank vegetation. The long strap‐like leaves of S. emersum being aligned approximately parallel to the flow and the highly variable velocity field created by the patch arrangement of macrophytes suggest that the dominant mechanism for turbulence production is vortex shedding along shear zones. Wake production around individual stems of S. emersum close to the bed may also be important locally. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
30.
《Mathematical Geology》1997,29(5):653-668
Filtering either through the electronics of an instrument or through digital procedure is performed routinely on geophysical data. When velocity fluctuations are measured in turbulent flows using electromagnetic current meters (ECMs), a builtin lowpass Butterworth filter of order n usually attenuates fluctuations at high frequencies. However, the effects of this filter may not be acknowledged in turbulence studies, thus impeding comparisons between data collected with different ECMs. This paper explores the implications of the filters on the characteristics of velocity signals, mainly on variance, power spectra, and correlation analyses. Variance losses resulting from filtering can be important but will vary with the order n of the Butterworth filter, decreasing as n increases. Knowing the filter response, it is possible to reconstruct the original signal spectrum to evaluate the effect of filtering on variance and to allow comparisons between data collected with different instruments. The autocorrelation function also is affected by filtering which increases the value of the coefficients in the first lags, resulting in an overestimation of the integral length scale of coherent structures. These important effects add to those related to size and shape differences in ECM sensors and must be taken into account in comparative studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号