首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3200篇
  免费   914篇
  国内免费   1363篇
测绘学   9篇
大气科学   36篇
地球物理   657篇
地质学   4198篇
海洋学   333篇
天文学   42篇
综合类   120篇
自然地理   82篇
  2024年   25篇
  2023年   60篇
  2022年   102篇
  2021年   127篇
  2020年   143篇
  2019年   175篇
  2018年   169篇
  2017年   186篇
  2016年   184篇
  2015年   231篇
  2014年   234篇
  2013年   257篇
  2012年   268篇
  2011年   231篇
  2010年   220篇
  2009年   244篇
  2008年   203篇
  2007年   277篇
  2006年   226篇
  2005年   176篇
  2004年   214篇
  2003年   169篇
  2002年   154篇
  2001年   200篇
  2000年   193篇
  1999年   134篇
  1998年   142篇
  1997年   94篇
  1996年   96篇
  1995年   78篇
  1994年   67篇
  1993年   42篇
  1992年   45篇
  1991年   30篇
  1990年   13篇
  1989年   18篇
  1988年   11篇
  1987年   11篇
  1986年   11篇
  1985年   4篇
  1984年   6篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1977年   1篇
  1971年   1篇
排序方式: 共有5477条查询结果,搜索用时 15 毫秒
161.
Coexisting melt (MI), fluid-melt (FMI) and fluid (FI) inclusions in quartz from the Oktaybrskaya pegmatite, central Transbaikalia, have been studied and the thermodynamic modeling of PVTX-properties of aqueous orthoboric-acid fluids has been carried out to define the conditions of pocket formation. At room temperature, FMI in early pocket quartz and in quartz from the coarse-grained quartz–oligoclase host pegmatite contain crystalline aggregates and an orthoboric-acid fluid. The portion of FMI in inclusion assemblages decreases and the volume of fluid in inclusions increases from the early to the late growth zones in the pocket quartz. No FMI have been found in the late growth zones. Significant variations of solid/fluid ratios in the neighboring FMI result from heterogeneous entrapment of coexisting melts and fluids by a host mineral. Raman spectroscopy, SEM EDS and EMPA indicate that the crystalline aggregates in FMI are dominated by mica minerals of the boron-rich muscovite–nanpingite CsAl2[AlSi3O10](OH,F)2 series as well as lepidolite. Topaz, quartz, potassium feldspar and several unidentified minerals occur in much lower amounts. Fluid isolations in FMI and FI have similar total salinity (4–8 wt.% NaCl eq.) and H3BO3 contents (12–16 wt.%). The melt inclusions in host-pegmatite quartz homogenize at 570–600 °C. The silicate crystalline aggregates in large inclusions in pocket quartz completely melt at 615 °C. However, even after those inclusions were significantly overheated at 650±10 °C and 2.5 kbar during 24 h they remained non-homogeneous and displayed two types: (i) glass+unmelted crystals and (ii) fluid+glass. The FMI glasses contain 1.94–2.73 wt.% F, 2.51 wt.% B2O3, 3.64–5.20 wt.% Cs2O, 0.54 wt.% Li2O, 0.57 wt.% Ta2O5, 0.10 wt.% Nb2O5, 0.12 wt.% BeO. The H2O content of the glass could exceed 12 wt.%. Such compositions suggest that the residual melts of the latest magmatic stage were strongly enriched in H2O, B, F, Cs and contained elevated concentrations of Li, Be, Ta, and Nb. FMI microthermometry showed that those melts could have crystallized at 615–550 °C.

Crystallization of quartz–feldspar pegmatite matrix leads to the formation of H2O-, B- and F-enriched residual melts and associated fluids (prototypes of pockets). Fluids of different compositions and residual melts of different liquidus–solidus PT-conditions would form pockets with various internal fluid pressures. During crystallization, those melts release more aqueous fluids resulting in a further increase of the fluid pressure in pockets. A significant overpressure and a possible pressure gradient between the neighboring pockets would induce fracturing of pockets and “fluid explosions”. The fracturing commonly results in the crushing of pocket walls, formation of new fractures connecting adjacent pockets, heterogenization and mixing of pocket fluids. Such newly formed fluids would interact with a primary pegmatite matrix along the fractures and cause autometasomatic alteration, recrystallization, leaching and formation of “primary–secondary” pockets.  相似文献   

162.
郑玉辉 《探矿工程》2004,31(5):9-10,13
简要叙述了一种新型地下连续墙施工稳定液——聚合物溶液的研制及其与细分散泥浆性能的对比,这种新型聚合物溶液克服了目前使用的地下连续墙稳定液品种单一、性能较差的缺点,满足复杂地层的地下连续墙施工需要。同时阐述了这种稳定液的组成成分和性能及其主要特点。  相似文献   
163.
164.
分析和探讨了HJ-1复合型钻井液对复杂地层护壁的作用机理及护壁性能试验情况,介绍了其在寨上矿区复杂地层钻探中的成功应用。  相似文献   
165.
Experiments were carried out on granular flows generated by instantaneous release of gas-fluidised, bidisperse mixtures and propagating into a horizontal channel. The mixture consists of fine (< 100 μm) and coarse (> 100 μm) particles of same density, with corresponding grain size ratios of ∼ 2 to 9. Initial fluidisation of the mixture destroys the interparticle frictional contacts, and the flow behaviour then depends on the initial bed packing and on the timescale required to re-establish strong frictional contacts. At a fines mass fraction (α) below that of optimal packing (∼ 40%), the initial mixtures consist of a continuous network of coarse particles with fines in interstitial voids. Strong frictional contacts between the coarse particles are probably rapidly re-established and the flows steadily decelerate. Some internal friction reduction appears to occur as α and the grain size ratio increases, possibly due to particle rolling and the lower roughness of internal shear surfaces. Segregation only occurs at large grain size ratio due to dynamical sieving with fines concentrated at the flow base. In contrast, at α above that for optimal packing, the initial mixtures consist of coarse particles embedded in a matrix of fines. Flow velocities and run-outs are similar to that of the monodisperse fine end-member, thus showing that the coarse particles are transported passively within the matrix whatever their amount and grain size are. These flows propagate at constant height and velocity as inviscid fluid gravity currents, thus suggesting negligible interparticle friction. We have determined a Froude number of 2.61 ± 0.08 consistent with the dam-break model for fluid flows, and with no significant variation as a function of α, the grain size ratio, and the initial bed expansion. Very little segregation occurs, which suggests low intensity particle interactions during flow propagation and that active fluidisation is not taking place. Strong frictional contacts are only re-established in the final stages of emplacement and stop the flow motion. We infer that fines-rich (i.e. matrix-supported) pyroclastic flows propagate as inviscid fluid gravity currents for most of their emplacement, and this is consistent with some field data.  相似文献   
166.
TheHuizelarge sizedPb ZndepositinYunnan ProvinceislocatedinthecenteroftheSichuan Yun nan GuizhouPb Zn Agpolymetalmineralizationzone(SYGPb ZnMMD)inwesternYangtzePlateandis oneofthefamousPb Zn GebasesinChina(Wang Jiangzhenetal.,2003;WangXiaochunetal.,2000).Thisdeposit,whichischaracterizedbylarge scale(Pb+Znmetallicreservesarehigherthan5mil liontons),highPb+Zngrade(thePb+Zngradesof mostoresare25%-35%),highabundanceofuseful associatedelements(Ag,Ge,Cd,Ga,etc.)and someimportantbreakt…  相似文献   
167.
Systematic microthermometric measurements of fluid inclusions in the PGE-polymetallic deposits hosted in the Lower Cambrian black rock series in southern China were performed, and the results suggest: (1) there exist two types of fluid inclusions. TypeⅠis of NaCl-H2O system with low-medium salinity, and its homogenization temperatures (Th) and salinities are 106.9- 286.4℃ and ( 0.8- 21.8) wt%NaCl eq. respectively; TypeⅡ is of CaCl2-NaCl-H2O system with medium-high salinities, and its homogenization temperatures and salinities range from 120.1℃ to 269.6℃ and ( 11.4- 31.4) wt%NaCl eq., respectively. The typeⅡ fluid inclusions have been discovered for the first time in this kind of deposits; (2) two generations of ore-forming fluids were recognized. Characteristics of fluid inclusions in the PGE-polymetallic ores and carbonate-quartz stockworks in the underlying phosphorites are almost of no difference, they may represent ore-forming fluids at the main metallogenic stage. The peak value of homogenization temperature of those fluid inclusions is about 170℃, while their salinities possess a remarkable bimodal distribution pattern with two peak values of (27-31) wt%NaCl eq. and (4-6) wt%NaCl eq. On the contrary, fluid inclusions in the carbonate-quartz veins in the hanging wall may represent ore-forming fluids at the post-metallogenetic stage. The homogenization temperatures and the peak values of salinities are mostly 130-170℃ and (12-14) wt%NaCl eq., respectively; (3) nobel gas isotopic composition analyses in combination with the microthermometric measurements of fluid inclusions suggest that the ore-forming fluids at the main metallogenetic stage were probably derived from mixing of basinal hot brines with the CaCl2-NaCl-H2O system and seawater with the NaCl-H2O system; (4) in the Early Cambrian, the basinal hot brines were trapped in the Caledonian basins, which were distributed along the southern margin of the Yangtze Craton, and where giant thick sediments were accumulated, and expelled and migrated laterally along the strata because of the pressure caused by overlying sediments. The basinal hot brines absorbed Ni, Mo, V, PGE from the surrounding rocks and were transformed into ore-bearing hydrothermal fluids with the CaCl2-NaCl-H2O system and medium-high salinities, then ascended along faults and mixed with seawater of the NaCl-H2O system, and finally PGE-polymetallic deposits or occurrences were formed in the black rock series.  相似文献   
168.
169.
Discordant zebra dolomite bodies occur locally in the Middle Cambrian Cathedral and Eldon Formations of the Main Ranges of the Canadian Rocky Mountains Fold and Thrust Belt. They are characterized by alternating dark grey (a) and white (b) bands, forming an ‘abba’ diagenetic cyclicity. These bands developed parallel to both bedding and cleavage. Dark grey (a) bands consist of fine (< 300 μm) non-planar crystalline impure dolomite. The white (b) bands are composed of coarse (up to several millimetres) milky-white pure saddle dolomites (b1) which are often covered by pore-lining zoned dolomite (b2). The b phases often possess a saddle-shaped morphology. In contrast to the replacement origin of the a dolomite, the zoned b2 dolomite rims are interpreted as a cement formed in open cavities. The b1 dolomite is interpreted as the result of recrystallization with diagenetic leaching of non-carbonate components. All the zebra dolomites studied are (nearly) stoichiometric and are characterized by enriched Na and depleted Sr concentrations. Fe and Mn concentrations in these dolomites differ depending on the sample locality. Fluid inclusion data indicate that the dolomites formed from relatively hot (TH = 130–200 °C), saline (20–23 wt% CaCl2 eq.) fluids. A diagenetic high temperature origin is also supported by depleted δ18O values (−20 to −14‰ VPDB). A contribution of 87Sr-enriched fluids is reflected in the 87Sr/86Sr values (0·7091–0·7123). Zebra dolomite development is explained by focused fluid flow, which exploited areas of structural weaknesses (e.g. basin-platform, rim areas, faults, etc.). Expulsion of hot basinal brines in a tectonically active regime generated overpressures, which explains the development of secondary porosity during zebra dolomitization as well as the intra-zebra fracturing at decimetre to micrometre scale.  相似文献   
170.
Interlayered graphitic and non‐graphitic schists from the Tauern Window, Eastern Alps, record contrasting mechanical behaviour during extensional exhumation. Graphitic schists contain mesoscale extension fractures, pervasive microcracks in garnet, and abundant secondary fluid inclusion planes; all three types of structures are oriented perpendicular to the stretching lineation. Crack spacings in garnet from graphitic samples are tightly clustered around a mean of 180 μm. Non‐graphitic schists have fewer and more randomly oriented microcracks and fluid inclusion planes and maintained strain compatibility via crystal plasticity. The presence or absence of graphite appears to have exerted a fundamental control on rheology during unroofing. Calculations for a model graphitic rock at 500 °C and fO2 = 10?24 MPa show that the equilibrium metamorphic fluid evolves from XCO2 = 0.07 to 0.38 during decompression from 700 to 400 MPa, in agreement with microcrack fluid inclusion data that show a change from XCO2 < 0.1 to 0.45 in graphitic samples over the same pressure interval. This compositional shift results in >60% expansion of the pore fluid during decompression. H2O‐rich fluid in non‐graphitic rocks expands <15% over the same pressure interval. The greater pore fluid expansion in low‐permeability graphitic horizons likely promoted tensile failure during unroofing. These results suggest that microcracking should be an inevitable consequence of decompression in many graphitic schists, whereas rocks that lack graphite are less likely to undergo microcracking. Microseismicity is predicted to be more common in graphitic than non‐graphitic rocks during unroofing of mountain belts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号