首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   1篇
测绘学   1篇
地球物理   2篇
地质学   2篇
天文学   31篇
自然地理   3篇
  2024年   1篇
  2022年   1篇
  2015年   2篇
  2013年   2篇
  2012年   3篇
  2009年   2篇
  2008年   1篇
  2007年   4篇
  2006年   3篇
  2005年   3篇
  2004年   2篇
  2003年   2篇
  2002年   3篇
  1998年   1篇
  1997年   1篇
  1995年   3篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
排序方式: 共有39条查询结果,搜索用时 46 毫秒
31.
Lorenzo Iorio   《New Astronomy》2005,10(8):603-615
In this paper, we critically discuss the so-far performed attempts aimed at the detection of the general relativistic gravitomagnetic Lense–Thirring effect in the gravitational field of the Earth with the existing LAGEOS satellites. In the latest reported measurement of the gravitomagnetic shift with the nodes of the LAGEOS satellites and the second generation GRACE-only EIGEN-GRACE02S Earth gravity model over an observational time span of 11 years a 5–10% total accuracy is claimed at 1–3σ, respectively. We will show that, instead, it might be 15–45% (1–3σ) if the impact of the secular variations of the even zonal harmonics is considered. Possible strategies in order both to make more robust and reliable the tests with the node-only LAGEOS–LAGEOS II combination used and to overcome the problems affecting it with other alternative combinations are presented.  相似文献   
32.
Explicit field equations of a scalar tensor theory of gravitation proposed by Saez and Ballester are obtained with the aid of Einstein–Rosen cylindrically symmetric metric in the presence of cosmic string source. The field equations being highly non–linear static and non–static cases have been considered separately. It is observed that in the static case the geometric strings do not exist while in the non–static case cosmological model does not exist in this theory.  相似文献   
33.
Space experiments to test the Equivalence Principle (EP) are affected by a systematic radiometer effect having the same signature as the target signal. In [PhRvD 63 (2001) 101101(R)] we have investigated this effect for the three proposed experiments currently under study by space agencies: μSCOPE, STEP and GG, setting the requirements to be met—on temperature gradients at the level of the test masses—for each experiment to reach its goal. We have now re-examined the radiometer effect in the case of μSCOPE and carried out a quantitative comparative analysis, on this issue, with the proposed heliocentric LISA mission for the detection of gravity waves. We find that, even assuming that the μSCOPE spacecraft and payload be built to meet all the challenging requirements of LISA, temperature gradients along its test masses would still make the radiometer effect larger than the target signal of an EP violation because of flying in the low geocentric orbit required for EP testing. We find no way to separate with certainty the radiometer systematic disturbance from the signal. μSCOPE is designed to fly a second accelerometer whose test masses have the same composition, in order to separate out systematic effects which—not being composition dependent like the signal—must be detected by both accelerometers. We point out that this accelerometer is in fact insensitive to the radiometer effect, just as it is to an EP violation signal, and therefore even having it onboard will not allow this disturbance to be separated out. μSCOPE is under construction and it is scheduled to fly in 2004. If it will detect a signal to the expected level, it will be impossible to establish with certainty whether it is due to the well known classical radiometer effect or else to a violation of the equivalence principle—which would invalidate General Relativity. The option to increase the rotation speed of the spacecraft (now set at about 10−3 Hz) so as to average out the temperature gradients which generate the radiometer effect, is allowed in the GG design, not in that of STEP and μSCOPE.  相似文献   
34.
If we require the effective field equations for a local system to be second order partial differential equations, an affinely invariant theory (not presuming the existence of a metric tensor beforehand) has to be non-local, the action being a multiple integral over the manifold considered.  相似文献   
35.
The image of a spiral galaxy is one of the most tantalizing images in nature. It demands that we ask: why do so many galaxies present this morphology? We currently have two main schools of thought concerning galaxy morphology, one based on gravitational effects and the other based on electromagnetic effects. The older gravitational models can explain how spirals might form, but they also predict that the spirals would quickly disintegrate. And the observed pervasiveness of spirals seems to imply not only their formation, but also their persistence over time. The newer plasma cosmology model is an improvement in that it explains how spirals might form and persist so long as plasma persists. But the formation of charge-neutral stars seems to return the scenario to the gravitational domain, and to subsequent dissolution. Clearly we need an additional idea to account for pervasive and persistent spiral galaxy structure. The present paper attempts to uncover a previously unrecognized gravitational mechanism that can serve as a viable candidate for sustaining persistent spiral galaxy structure.  相似文献   
36.
37.
Green's function solution to spherical gradiometric boundary-value problems   总被引:1,自引:1,他引:1  
 Three independent gradiometric boundary-value problems (BVPs) with three types of gradiometric data, {Γ rr }, {Γ r θ r λ} and {Γθθ−Γλλθλ}, prescribed on a sphere are solved to determine the gravitational potential on and outside the sphere. The existence and uniqueness conditions on the solutions are formulated showing that the zero- and the first-degree spherical harmonics are to be removed from {Γ r θ r λ} and {Γθθ−Γλλθλ}, respectively. The solutions to the gradiometric BVPs are presented in terms of Green's functions, which are expressed in both spectral and closed spatial forms. The logarithmic singularity of the Green's function at the point ψ=0 is investigated for the component Γ rr . The other two Green's functions are finite at this point. Comparisons to the paper by van Gelderen and Rummel [Journal of Geodesy (2001) 75: 1–11] show that the presented solution refines the former solution. Received: 3 October 2001 / Accepted: 4 October 2002  相似文献   
38.
In this paper we respond to the criticisms of “Phenomenology of the Lense-Thirring effect in the Solar System” by Iorio et al. about the general relativistic phenomena of gravitomagnetism and frame-dragging. The claims of the paper by Iorio et al. are not reproducible in any of our independent analyses.  相似文献   
39.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号