首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1013篇
  免费   11篇
  国内免费   14篇
测绘学   9篇
大气科学   4篇
地球物理   54篇
地质学   55篇
海洋学   4篇
天文学   890篇
综合类   2篇
自然地理   20篇
  2024年   1篇
  2023年   1篇
  2022年   1篇
  2021年   14篇
  2020年   2篇
  2019年   3篇
  2018年   7篇
  2017年   4篇
  2016年   4篇
  2015年   1篇
  2014年   5篇
  2013年   12篇
  2012年   11篇
  2011年   130篇
  2010年   172篇
  2009年   115篇
  2008年   128篇
  2007年   74篇
  2006年   102篇
  2005年   84篇
  2004年   74篇
  2003年   37篇
  2002年   26篇
  2001年   4篇
  2000年   4篇
  1999年   9篇
  1998年   2篇
  1997年   3篇
  1996年   3篇
  1995年   3篇
  1994年   1篇
  1985年   1篇
排序方式: 共有1038条查询结果,搜索用时 31 毫秒
131.
Gareth A. Morgan 《Icarus》2009,202(1):39-59
The majority of martian valley networks are found on Noachian-aged terrain and are attributed to be the result of a ‘warm and wet’ climate that prevailed early in Mars' history. Younger valleys have been identified, though these are largely interpreted to be the result of localized conditions associated with the melting of ice from endogenic heat sources. Sinton crater, a 60 km diameter impact basin in the Deuteronilus Mensae region of the dichotomy boundary, is characterized by small anastomosing valley networks that are located radial to the crater rim. Large scale deposits, interpreted to be the remains of debris covered glaciers, have been identified in the area surrounding Sinton, and our observations have revealed the occurrence of an ice rich fill deposit within the crater itself. We have conducted a detailed investigated into the Sinton valley networks with all the available remote data sets and have dated their formation to the Amazonian/Hesperian boundary. The spatial and temporal association between Sinton crater and the valley networks suggest that the impact was responsible for their formation. We find that the energy provided by an asteroid impact into surficial deposits of snow/ice is sufficient to generate the required volumes of melt water needed for the valley formation. We therefore interpret these valleys to represent a distinct class of martian valley networks. This example demonstrates the potential for impacts to cause the onset of fluvial erosion on Mars. Our results also suggest that periods of glacial activity occurred throughout the Amazonian and into the Hesperian in association with variations in spin orbital parameters.  相似文献   
132.
J.S. Levy  J.W. Head  J.L. Dickson 《Icarus》2009,201(1):113-126
We describe the morphology and spatial relationships between composite-wedge polygons and Mars-like gullies (consisting of alcoves, channels, and fans) in the hyper-arid Antarctic Dry Valleys (ADV), as a basis for understanding possible origins for martian gullies that also occur in association with polygonally patterned ground. Gullies in the ADV arise in part from the melting of atmospherically-derived, wind-blown snow trapped in polygon troughs. Snowmelt that yields surface flow can occur during peak southern hemisphere summer daytime insolation conditions. Ice-cemented permafrost provides an impermeable substrate over which meltwater flows, but does not significantly contribute to meltwater generation. Relationships between contraction crack polygons and sedimentary fans at the distal ends of gullies show deposition of fan material in polygon troughs, and dissection of fans by expanding polygon troughs. These observations suggest the continuous presence of meters-thick ice-cemented permafrost beneath ADV gullies. We document strong morphological similarities between gullies and polygons on Mars and those observed in the ADV Inland Mixed microclimate zone. On the basis of this morphological comparison, we propose an analogous, top-down melting model for the initiation and evolution of martian gullies that occur on polygonally-patterned, mantled surfaces.  相似文献   
133.
We have found sorted stone circles and polygons near the equator of Mars, using new 25 cm/pixel NASA HiRISE (High Resolution Imaging Science Experiment) images. The sorted circles occur in geologically recent catastrophic flood deposits in the equatorial Elysium Planitia region, and are diagnostic of periglacial processes: sorted polygons do not form from volcanic activity, as has been suggested for non-sorted polygons in this region. These landforms indicate that (i) a long-lived, geologically recent, active cryoturbation layer of ground ice was present in the regolith, (ii) there was some degree of freeze-thaw, and thus (iii) there were sustained period(s), likely within the last 10 Ma, in which the martian climate was 40 to 60 K warmer than current models predict.  相似文献   
134.
Richard Ulrich 《Icarus》2009,201(1):127-134
Diffusion advection is an effect in diffusive multicomponent mass transfer that occurs when the flux vectors of the individual components do not add up to zero. This can be a significant effect for the mass transfer of water vapor from subsurface ice or liquid reservoirs through porous regolith at martian temperatures and pressures. Ignoring diffusion advection and using Fick's law alone to calculate the flux under these conditions will result in an erroneously small value while using a measured flux to calculate a diffusivity will result in an erroneously high value. The inaccuracy in both cases increases with temperature. The literature contains several examples of erroneous treatment of this effect. The correct approach is well-known from other applications of mass transfer and takes diffusion advection into account in the appropriate amount regardless of the temperature and pressure and reduces to the simple Fick's law when conditions warrant. In this way, there is no need to decide under what conditions diffusion advection is or is not important. It can be used in the transition region to pure Knudsen diffusion in a fashion similar to that used with the more limited Fickian approach.  相似文献   
135.
We present results of several years of research and data processing aimed at modelling the Mars gravity field and its longest wavelength time variations. The new solution includes tracking data from Mars Global Surveyor (MGS) from 1998 to 2006 (end of mission) and from Mars Odyssey from 2002 to the spring of 2008; this is the longest analyzed data set from these two orbiter missions as compared to previous works. The new model has been obtained by a team working in Europe, independently from the works of groups at NASA Jet Propulsion Laboratory (JPL) and Goddard Space Flight Center (GSFC), also with totally independent software. Observations consist in two and three-way Doppler measurements (also one way for MGS), and range tracking data collected by the Deep Space Network and have been processed in 4 day arcs, taking into account all disturbing forces of gravitational and non-gravitational origins; for each arc the state vector, drag and solar pressure model multiplying factors, and angular momentum dump parameters are adjusted. The static field (MGGM08A) is represented in spherical harmonics up to degree and order 95 and is very close to previously published models (in terms of spectral components and also over specific features); correlations with the global Mars topography are established and apparent depths of compensation by degree are derived. Lumped zonal harmonics of degree two and three are solved for every 10 days, exhibiting variations in line with previous results (including authors’ ones); the work also shows the difficulty of finding clean signatures (annual and semi-annual) for the zonal coefficient of second degree. The k2 Love number is also derived from the ensemble of data, as well as from subsets of them; values between 0.110 and 0.130 are found, which are consistent with the existence of a Martian fluid core of significant radius.  相似文献   
136.
The time variations of spectral properties of dark martian surface features are investigated using the OMEGA near-IR dataset. The analyzed period covers two Mars years, spanning from early 2004 to early 2008 (includes the 2007 global dust event). Radiative transfer modeling indicates that the apparent albedo variations of low to mid-latitude dark regions are consistent with those produced by the varying optical depth of atmospheric dust as measured simultaneously from the ground by the Mars Exploration Rovers. We observe only a few significant albedo changes that can be attributed to surface phenomena. They are small-scaled and located at the boundaries between bright and dark regions. We then investigate the variations of the mean particle size of aerosols using the evolution of the observed dark region spectra between 1 and 2.5 μm. Overall, we find that the observed changes in the spectral slope are consistent with a mean particle size of aerosols varying with time between 1 and 2 μm. Observations with different solar zenith angles make it possible to characterize the aerosol layer at different altitudes, revealing a decrease of the particle size of aerosols as altitude increases.  相似文献   
137.
Recent geological observations in the northern mid-latitudes of Mars show evidence for past glacial activity during the late Amazonian, similar to the integrated glacial landsystems in the Dry Valleys of Antarctica. The large accumulation of ice (many hundreds of meters) required to create the observed glacial deposits points to significant atmospheric precipitation, snow and ice accumulation, and glacial flow. In order to understand the climate scenario required for these conditions, we used the LMD (Laboratoire de Météorologie Dynamique) Mars GCM (General Circulation Model), which is able to reproduce the present-day water cycle, and to predict past deposition of ice consistent with geological observations in many cases. Prior to this analysis, however, significant mid-latitude glaciation had not been simulated by the model, run under a range of parameters.In this analysis, we studied the response of the GCM to a wider range of orbital configurations and water ice reservoirs, and show that during periods of moderate obliquity (? = 25-35°) and high dust opacity (τdust = 1.5-2.5), broad-scale glaciation in the northern mid-latitudes occurs if water ice deposited on the flanks of the Tharsis volcanoes at higher obliquity is available for sublimation. We find that high dust contents of the atmosphere increase its water vapor holding capacity, thereby moving the saturation region to the northern mid-latitudes. Precipitation events are then controlled by topographic forcing of stationary planetary waves and transient weather systems, producing surface ice distribution and amounts that are consistent with the geological record. Ice accumulation rates of ∼10 mm yr−1 lead to the formation of a 500-1000 m thick regional ice sheet that will produce glacial flow patterns consistent with the geological observations.  相似文献   
138.
The heavily-cratered southern hemisphere of Mars encompasses the planet’s strongest, most widespread magnetization. Our study concentrates on this magnetized region in the southern hemisphere within 40° of latitude 40°S, longitude 180°W. First we rotate the coordinates to position the center at −40°, 180° and treat these new latitudes and longitudes as if they were Cartesian coordinates. Then, using an ordinary two-dimensional Fourier analysis for downward continuation, the MGS (MAG/ER) magnetic field data at satellite mapping elevation of ∼400 km are extrapolated to 100 km, sources are estimated and used to model the fields. Quantitative comparison of the downward continued field with the aerobraking field for bins having angular deviation within ±30° gives correlation of .947, .868, and .769 for the components, respectively. This agreement of the fields may result from most of the power in the magnetization resting in wavelengths ∼400 km, with comparatively little at ∼100 km. Over this region, covering nearly an octant of the planet, just a dozen sources can account for 94% of the variance of the magnetic field at the surface. In these models for the field an obvious asymmetry in polarity exists, with majority of the sources being positive. The locations of strongest surface magnetization appear to be near - but not actually within - ancient multi-ringed basins. We test the likelihood of this association by comparing the observed sources found within and near basins for two alternative basin location scenarios with random distributions. For both alternatives we find the observed distributions to be low-probability occurrences. If contemporaneous, this would establish that Mars’ magnetic field extended to the time of impacts causing these basins.  相似文献   
139.
We report on the nature of fine particle (<150 μm) transport under simulated martian conditions, in order to better understand the Mars Science Laboratory’s (MSL) sample acquisition, processing and handling subsystem (SA/SPaH). We find that triboelectric charging due to particle movement may have to be controlled in order for successful transport of fines that are created within the drill, processed through the Collection and Handling for In situ Martian Rock Analysis (CHIMRA) sample handing system, and delivered to the Sample Analysis at Mars (SAM) and Chemistry and Mineralogy (CheMin) instruments. These fines will be transferred from the surface material to the portioner, a 3 mm diameter, 8 mm deep distribution center where they will drop ∼2 cm to the instrument inlet funnels. In our experiments, movement of different material including terrestrial analogs and martian soil simulants (Mars Mojave Simulant - MMS) resulted in 1-7 nanocoulombs of charge to build up for several different experimental configurations. When this charging phenomenon occurs, several different results are observed including particle clumping, adherence of material on conductive surfaces, or electrostatic repulsion, which causes like-charged particles to move away from each other. This electrostatic repulsion can sort samples based upon differing size fractions, while adhesion causes particles of different sizes to bind into clods. Identifying these electrostatic effects can help us understand potential bias in the analytical instruments and to define the best operational protocols to collect samples on the surface of Mars.  相似文献   
140.
Calculations of the trapping of heavy noble gases within multiple guest clathrates under Mars-like conditions show that a substantial fraction of the martian Xe, perhaps even the vast majority, could be in clathrates. In addition, the Xe/Kr ratio in the clathrates would probably be much higher than in the atmosphere, so the formation or dissociation of a relatively small amount of clathrate could measurably change the atmospheric ratio. Relatively crude (factor of 2) measurements of the seasonal variability in that ratio by in situ spacecraft would be sensitive to ∼10% of the seasonal atmospheric CO2 variability being a result of clathrates, rather than pure CO2 frost. In addition, sequestration of Xe in clathrates remains a viable mechanism for explaining the variable Xe/Kr ratios seen in different suites of martian meteorites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号