首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   93篇
  免费   0篇
测绘学   2篇
海洋学   1篇
天文学   90篇
  2019年   1篇
  2011年   7篇
  2010年   10篇
  2009年   13篇
  2008年   7篇
  2007年   17篇
  2006年   15篇
  2005年   5篇
  2004年   6篇
  2003年   7篇
  1995年   2篇
  1993年   3篇
排序方式: 共有93条查询结果,搜索用时 15 毫秒
11.
We investigate the dynamical evolution of trans-neptunian objects (TNOs) in typical scattered disk orbits (scattered TNOs) by performing simulations using several thousand particles lying initially on Neptune-encountering orbits. We explore the role of resonance sticking in the scattered disk, a phenomenon characterized by multiple temporary resonance captures (‘resonances’ refers to external mean motion resonances with Neptune, which can be described in the form r:s, where the arguments r and s are integers). First, all scattered TNOs evolve through intermittent temporary resonance capture events and gravitational scattering by Neptune. Each scattered TNO experiences tens to hundreds of resonance captures over a period of 4 Gyr, which represents about 38% of the object's lifetime (mean value). Second, resonance sticking plays an important role at semimajor axes , where the great majority of such captures occurred. It is noteworthy that the stickiest (i.e., dominant) resonances in the scattered disk are located within this distance range and are those possessing the lowest argument s. This was evinced by r:1, r:2 and r:3 resonances, which played the greatest role during resonance sticking evolution, often leading to captures in several of their neighboring resonances. Finally, the timescales and likelihood of temporary resonance captures are roughly proportional to resonance strength. The dominance of low s resonances is also related to the latter. In sum, resonance sticking has an important impact on the evolution of scattered TNOs, contributing significantly to the longevity of these objects.  相似文献   
12.
Positions of 17 filaments found inside the Perseid meteoroid stream by method of indices are compared with those of low-order mean-motion resonances with Jupiter and Saturn. By this comparing, the Jupiter and Saturn branches of the Perseid stream were identified. The existence of gaps in the distribution of the semi-major axes of the Perseids is confirmed using the more numerous material of a new version of the IAU Meteor Data Center Catalogue. Our integrations of the motion of particles in the Perseid stream lead to an extraordinary important fact. The found filaments are located in close proximity of strong resonances. They represent, with a high probability, increased numbers of particles gravitationally expelled from a resonant gap and (temporary) settled down in its close proximity.  相似文献   
13.
The Agnia asteroid family, a cluster of asteroids located near semimajor axis a=2.79 AU, has experienced significant dynamical evolution over its lifetime. The family, which was likely created by the breakup of a diameter D∼50 km parent body, is almost entirely contained within the high-order secular resonance z1. This means that unlike other families, Agnia's full extent in proper eccentricity and inclination is a byproduct of the large-amplitude resonant oscillations produced by this resonance. Using numerical integration methods, we found that the spread in orbital angles observed among Agnia family members would have taken at least 40 Myr to create; this sets a lower limit on the family's age. To determine the upper bound on Agnia's age, we used a Monte Carlo model to track how the small members in the family evolve in semimajor axis by Yarkovsky thermal forces. Our results indicate the family is no more than 140 Myr old, with a best-fit age of 100+30−20 Myr. Using two independent methods, we also determined that the D∼5 km fragments were ejected from the family-forming event at a velocity near 15 m/s. This velocity is consistent with results from numerical hydrocode simulations of asteroid impacts and observations of other similarly sized asteroid families. Finally, we found that 57% of known Agnia fragments were initially prograde rotators. The reason for this limited asymmetry is unknown, though we suspect it is a fluke produced by the stochastic nature of asteroid disruption events.  相似文献   
14.
Tabaré Gallardo 《Icarus》2006,181(1):205-217
By means of numerical methods we explore the relevance of the high-order exterior mean motion resonances (MMR) with Neptune that a scattered disk object (SDO) can experience in its diffusion to the Oort cloud. Using a numerical method for estimate the strength of these resonances we show that high-eccentricity or high-inclination resonant orbits should have evident dynamical effects. We investigate the properties of the Kozai mechanism (KM) for non-resonant SDO's and the conditions that generate the KM inside a MMR associated with substantial changes in eccentricity and inclination. We found that the KM inside a MMR is typical for SDO's with Pluto-like or greater inclinations and is generated by the oscillation of ω inside the mixed (e,i) resonant terms of the disturbing function. A SDO diffusing to the Oort cloud should experience temporary captures in MMR, preferably of the type 1:N, and when evolving inside a MMR and experiencing the KM it can reach regions where the strength of the resonance drops and consequently there is a possibility of being decoupled from the resonance generating by this way a long-lived high-perihelion scattered disk object (HPSDO).  相似文献   
15.
As the obliquity of Mars is strongly chaotic, it is not possible to give a solution for its evolution over more than a few million years. Using the most recent data for the rotational state of Mars, and a new numerical integration of the Solar System, we provide here a precise solution for the evolution of Mars' spin over 10 to 20 Myr. Over 250 Myr, we present a statistical study of its possible evolution, when considering the uncertainties in the present rotational state. Over much longer time span, reaching 5 Gyr, chaotic diffusion prevails, and we have performed an extensive statistical analysis of the orbital and rotational evolution of Mars, relying on Laskar's secular solution of the Solar System, based on more than 600 orbital and 200,000 obliquity solutions over 5 Gyr. The density functions of the eccentricity and obliquity are specified with simple analytical formulas. We found an averaged eccentricity of Mars over 5 Gyr of 0.0690 with standard deviation 0.0299, while the averaged value of the obliquity is 37.62° with a standard deviation of 13.82°, and a maximal value of 82.035°. We find that the probability for Mars' obliquity to have reached more than 60° in the past 1 Gyr is 63.0%, and 89.3% in 3 Gyr. Over 4 Gyr, the position of Mars' axis is given by a uniform distribution on a spherical cap limited by the obliquity 58.62°, with the addition of a random noise allowing a slow diffusion beyond this limit. We can also define a standard model of Mars' insolation parameters over 4 Gyr with the most probable values 0.068 for the eccentricity and 41.80° for the obliquity.  相似文献   
16.
17.
Using Cassini images, we examine the faint material along the orbits of Methone, Anthe and Pallene, three small moons that reside between the orbits of Mimas and Enceladus. A continuous ring of material covers the orbit of Pallene; it is visible at extremely high phase angles and appears to be localized vertically to within ±25 km of Pallene's inclined orbit. By contrast, the material associated with Anthe and Methone appears to lie in longitudinally confined arcs. The Methone arc extends over ∼10° in longitude around the satellite's position, while the Anthe arc reaches ∼20° in length. The extents of these arcs are consistent with their confinement by nearby corotation eccentricity resonances with Mimas. Anthe has even been observed to shift in longitude relative to its arc in the expected manner given the predicted librations of the moon.  相似文献   
18.
Depth-dependent interior structure models of Mercury are calculated for several plausible chemical compositions of the core and of the mantle. For those models, we compute the associated libration amplitude, obliquity, tidal deformation, and tidal changes in the external potential. In particular we study the relation between the interior structure parameters for five different mantle mineralogies and two different temperature profiles together with two extreme crust density values. We investigate the influence of the core light element concentration, temperature, and melting law on core state and inner and outer core size. We show that a sulfur concentration above 10 wt% is unlikely if the temperature at the core-mantle boundary is above 1850 K and the silicate shell at least 240 km thick. The interior models can only have an inner core if the sulfur weight fraction is below 5 wt% for core-mantle boundary temperature in the 1850-2200 K range. Within our modeling hypotheses, we show that with the expected precision on the moment of inertia the core size can be estimated to a precision of about 50 km and the core sulfur concentration with an error of about 2 wt%. This uncertainty can only be reduced when more information on the mantle mineralogy of Mercury becomes available. However, we show that the uncertainty on the core size estimation can be greatly reduced, to about 25 km, if tidal surface displacements and tidal variations in the external potential are considered.  相似文献   
19.
Images of the dusty rings obtained by the Cassini spacecraft in late 2006 and early 2007 reveal unusual structures composed of alternating canted bright and dark streaks in the outer G ring (∼170,000 km from Saturn center), the inner Roche Division (∼138,000 km) and the middle D ring (70,000-73,000 km). The morphology, locations and pattern speeds of these features indicate that they are generated by Lindblad resonances. The structure in the G ring appears to be generated by the 8:7 Inner Lindblad Resonance with Mimas. Based in part on the morphology of the G ring structure, we develop a phenomenological model of Lindblad-resonance-induced structures in faint rings, where the observed variations in the rings' optical depth and brightness are due to alignments and trends in the particles' orbital parameters with semi-major axis. To reproduce the canted character of these structures, this model requires a term in the equations of motion that damps eccentricities. Using this model to interpret the structures in the D ring and Roche Division, we find that the D-ring patterns mimic those predicted at 2:1 Inner Lindblad Resonances and the Roche Division patterns look like those expected at 3:4 Outer Lindblad Resonances. As in the G ring, the effective eccentricity-damping timescale is of order 10-100 days, suggesting that free eccentricities are strongly damped by some mechanism that operates throughout all these regions. However, unlike in the G ring, perturbation forces with multiple periods are required to explain the observed patterns in the D ring and Roche Division. The strongest perturbation periods occur at 10.53, 10.56 and 10.74 hours (only detectable in the D ring) and 10.82 hours (detectable in both the D ring and Roche division). These periods are comparable to the rotation periods of Saturn's atmosphere and magnetosphere. The inferred strength of the perturbation forces required to produce these patterns (and the absence of evidence for other resonances driven by these periods in the main rings) suggests that non-gravitational forces are responsible for generating these features in the D ring and Roche Division. If this interpretation is correct, then some of these structures may have some connection with periodic signals observed in Saturn's magnetic field and radio-wave emissions, and accordingly could help clarify the nature and origin(s) of these magnetospheric asymmetries.  相似文献   
20.
Ke Zhang  Francis Nimmo 《Icarus》2009,204(2):597-609
We study the orbital behavior of Saturn’s satellites Enceladus and Dione during their passage through the 2:1 mean-motion resonances to constrain their interior structures, parameterized by the quantity k2/Q (assumed constant). Enceladus’ evolution after escape from the second-order e-Enceladus e-Dione resonance requires that (k2/Q)Enceladus<8×10-4, for that QSaturn>18,000. This result is in agreement with [Meyer, J., Wisdom, J., 2008b. Icarus 193, 213-223]. The present-day libration amplitude of Enceladus requires that (k2/Q)Enceladus>1.2×10-4, assuming that QSaturn<105. Dione’s present-day eccentricity indicates that (k2/Q)Dione?3×10-4 for QSaturn>18,000. Assuming Maxwellian viscoelastic behavior, we find that for Enceladus a convective ice shell overlying an ocean is too dissipative to match the orbital constraints. We conclude that a conductive shell overlying an ocean is more likely, and discuss the implications of this result. Dione’s ice shell is also likely to be conductive, but our results are less constraining.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号