首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   93篇
  免费   0篇
测绘学   2篇
海洋学   1篇
天文学   90篇
  2019年   1篇
  2011年   7篇
  2010年   10篇
  2009年   13篇
  2008年   7篇
  2007年   17篇
  2006年   15篇
  2005年   5篇
  2004年   6篇
  2003年   7篇
  1995年   2篇
  1993年   3篇
排序方式: 共有93条查询结果,搜索用时 31 毫秒
31.
Tabaré Gallardo 《Icarus》2006,184(1):29-38
The aim of this work is to present a systematic survey of the strength of the mean motion resonances (MMRs) in the Solar System. We know by applying simple formulas where the resonances with the planets are located but there is no indication of the strength that these resonances have. We propose a numerical method for the calculation of this strength and we present an atlas of the MMRs constructed with this method. We found there exist several resonances unexpectedly strong and we look and find in the small bodies population several bodies captured in these resonances. In particular in the inner Solar System we find one asteroid in the resonance 6:5 with Venus, five asteroids in resonance 1:2 with Venus, three asteroids in resonance 1:2 with Earth and six asteroids in resonance 2:5 with Earth. We find some new possible co-orbitals of Earth, Mars, Saturn, Uranus and Neptune. We also present a discussion about the behavior of the resonant disturbing function and where the stable equilibrium points can be found at low and high inclination resonant orbits.  相似文献   
32.
We investigate the survivability of Trojan-type companions of Neptune during primordial radial migration of the giant planets Jupiter, Saturn, Uranus, and Neptune. We adopt the usual planet migration model in which the migration speed decreases exponentially with a characteristic time scale τ (the e-folding time). We perform a series of numerical simulations, each involving the migrating giant planets plus ∼1000 test particle Neptune Trojans with initial distributions of orbital eccentricity, inclination, and libration amplitude similar to those of the known jovian Trojans asteroids. We analyze these simulations to measure the survivability of Neptune's Trojans as a function of migration rate. We find that orbital migration with the characteristic time scale τ=106 years allows about 35% of preexisting Neptune Trojans to survive to 5τ, by which time the giant planets have essentially reached their final orbits. In contrast, slower migration with τ=107 years yields only a ∼5% probability of Neptune Trojans surviving to a time of 5τ. Interestingly, we find that the loss of Neptune Trojans during planetary migration is not a random diffusion process. Rather, losses occur almost exclusively during discrete prolonged episodes when Trojan particles are swept by secondary resonances associated with mean-motion commensurabilities of Uranus with Neptune. These secondary resonances arise when the circulation frequencies, f, of critical arguments for Uranus-Neptune mean-motion near-resonances (e.g., fUN1:2, fUN4:7) are commensurate with harmonics of the libration frequency of the critical argument for the Neptune-Trojan 1:1 mean-motion resonance (fNT1:1). Trojans trapped in the secondary resonances typically have their libration amplitudes amplified until they escape the 1:1 resonance with Neptune. Trojans with large libration amplitudes are susceptible to loss during sweeping by numerous high-order secondary resonances (e.g., fUN1:2≈11fNT1:1). However, for the slower migration, with τ=107 years, even tightly bound Neptune Trojans with libration amplitudes below 10° can be lost when they become trapped in 1:3 or 1:2 secondary resonances between fUN1:2 and fNT1:1. With τ=107 years the 1:2 secondary resonance was responsible for the single greatest episode of loss, ejecting nearly 75% of existing Neptune Trojans. This episode occurred during the late stages of planetary migration when the remnant planetesimal disk would have been largely dissipated. We speculate that if the number of bodies liberated during this event was sufficiently high they could have caused a spike in the impact rate throughout the Solar System.  相似文献   
33.
Keiko Atobe  Shigeru Ida 《Icarus》2004,168(2):223-236
We have investigated obliquity variations of possible terrestrial planets in habitable zones (HZs) perturbed by a giant planet(s) in extrasolar planetary systems. All the extrasolar planets so far discovered are inferred to be jovian-type gas giants. However, terrestrial planets could also exist in extrasolar planetary systems. In order for life, in particular for land-based life, to evolve and survive on a possible terrestrial planet in an HZ, small obliquity variations of the planet may be required in addition to its orbital stability, because large obliquity variations would cause significant climate change. It is known that large obliquity variations are caused by spin-orbit resonances where the precession frequency of the planet's spin nearly coincides with one of the precession frequencies of the ascending node of the planet's orbit. Using analytical expressions, we evaluated the obliquity variations of terrestrial planets with prograde spins in HZs. We found that the obliquity of terrestrial planets suffers large variations when the giant planet's orbit is separated by several Hill radii from an edge of the HZ, in which the orbits of the terrestrial planets in the HZ are marginally stable. Applying these results to the known extrasolar planetary systems, we found that about half of these systems can have terrestrial planets with small obliquity variations (smaller than 10°) over their entire HZs. However, the systems with both small obliquity variations and stable orbits in their HZs are only 1/5 of known systems. Most such systems are comprised of short-period giant planets. If additional planets are found in the known planetary systems, they generally tend to enhance the obliquity variations. On the other hand, if a large/close satellite exists, it significantly enhances the precession rate of the spin axis of a terrestrial planet and is likely to reduce the obliquity variations of the planet. Moreover, if a terrestrial planet is in a retrograde spin state, the spin-orbit resonance does not occur. Retrograde spin, or a large/close satellite might be essential for land-based life to survive on a terrestrial planet in an HZ.  相似文献   
34.
Matija ?uk  Brett J. Gladman 《Icarus》2006,183(2):362-372
The passage of Jupiter and Saturn through mutual 1:2 mean-motion resonance has recently been put forward as explanation for their relatively high eccentricities [Tsiganis, K., Gomes, R., Morbidelli, A., Levison, H.F., 2005. Nature 435, 459-461] and the origin of Jupiter's Trojans [Morbidelli, A., Levison, H.F., Tsiganis, K., Gomes, R., 2005. Nature 435, 462-465]. Additional constraints on this event based on other small-body populations would be highly desirable. Since some outer satellite orbits are known to be strongly affected by the near-resonance of Jupiter and Saturn (“the Great Inequality”; ?uk, M., Burns, J.A., 2004b. Astron. J. 128, 2518-2541), the irregular satellites are natural candidates for such a connection. In order to explore this scenario, we have integrated 9200 test particles around both Jupiter and Saturn while they went through a resonance-crossing event similar to that described by Tsiganis et al. [Tsiganis, K., Gomes, R., Morbidelli, A., Levison, H.F., 2005. Nature 435, 459-461]. The test particles were positioned on a grid in semimajor axes and inclinations, while their initial pericenters were put at just 0.01 AU from their parent planets. The goal of the experiment was to find out if short-lived bodies, spiraling into the planet due to gas drag (or alternatively on orbits crossing those of the regular satellites), could have their pericenters raised by the resonant perturbations. We found that about 3% of the particles had their pericenters raised above 0.03 AU (i.e. beyond Iapetus) at Saturn, but the same happened for only 0.1% of the particles at Jupiter. The distribution of surviving particles at Saturn has strong similarities to that of the known irregular satellites. If saturnian irregular satellites had their origin during the 1:2 resonance crossing, they present an excellent probe into the early Solar System's evolution. We also explore the applicability of this mechanism for Uranus, and find that only some of the uranian irregular satellites have orbits consistent with resonant pericenter lifting. In particular, the more distant and eccentric satellites like Sycorax could be stabilized by this process, while closer-in moons with lower eccentricity orbits like Caliban probably did not evolve by this process alone.  相似文献   
35.
Anne-Sophie Libert 《Icarus》2006,183(1):186-192
Using a high-order (order 12) expansion of the perturbative potential in powers of eccentricities [Libert, A.-S., Henrard, J., 2005. Celest. Mech. Dynam. Astron. 93, 187-200], we study the secular effects of two coplanar planets which are not in mean motion resonances. The main results concern eccentricity variations, oscillation amplitude of the angular difference of the apsidal lines (Δ?) and frequency of such an oscillation. We show that this analytical approach describes correctly the behaviour of most of the exosystems and underlines the known limitations of the linear Laplace-Lagrange theory. Apsidal configuration of υ Andromedae, HD 168443, HD 169830, HD 38529, HD 74156 and HD 12661 are examined. We also point out the great sensitivity of the υ Andromedae system to the initial values (e1(0), e2(0) or Δ?(0)).  相似文献   
36.
Martin Veasey 《Icarus》2011,214(1):265-274
As Mercury orbits the Sun, gravitational torques on its equatorial elliptical shape give rise to a planetary libration. The amplitude of Mercury’s libration, as determined from Earth-based radar speckle pattern observations, suggests that only the mantle participates in the motion. This indicates a decoupling between the core and the mantle, and therefore that the outermost part of the core must be fluid. If a solid inner core is present at the center of Mercury, the equatorial elliptical shape of the latter may become misaligned with that of Mercury’s mantle, leading to an internal gravitational torque between the two. If this torque is large, it may participate in the dynamics of Mercury’s libration. The goal of this work is to determine whether Mercury’s observed librations can be used to place constraints on the properties of its inner core. We present a comparison between predicted and observed librations for a range of interior models of Mercury, with various inner core sizes and fluid core densities. We show that a marginally better fit to observations can be achieved for interior models that have an inner core radius larger than 400 km. However, the improvement in fit is small, and it is not possible to draw robust conclusions on the size of Mercury’s inner core on the basis of existing libration data. Nevertheless, our study demonstrates that the influence of the inner core on the libration of Mercury could be detected with a decade worth of accurate observations.  相似文献   
37.
Ke Zhang  Douglas P. Hamilton 《Icarus》2008,193(1):267-282
We investigate the orbital history of the small neptunian satellites discovered by Voyager 2. Over the age of the Solar System, tidal forces have caused the satellites to migrate radially, bringing them through mean-motion resonances with one another. In this paper, we extend our study of the largest satellites Proteus and Larissa [Zhang, K., Hamilton, D.P., 2007. Icarus 188, 386-399] by adding in mid-sized Galatea and Despina. We test the hypothesis that these moons all formed with zero inclinations, and that orbital resonances excited their tilts during tidal migration. We find that the current orbital inclinations of Proteus, Galatea, and Despina are consistent with resonant excitation if they have a common density . Larissa's inclination, however, is too large to have been caused by resonant kicks between these four satellites; we suggest that a prior resonant capture event involving either Naiad or Thalassa is responsible. Our solution requires at least three past resonances with Proteus, which helps constrain the tidal migration timescale and thus Neptune's tidal quality factor: 9000<QN<36,000. We also improve our determination of Qs for Proteus and Larissa, finding 36<QP<700 and 18<QL<200. Finally, we derive a more general resonant capture condition, and work out a resonant overlap criterion relevant to satellite orbital evolution around an oblate primary.  相似文献   
38.
K. Tsiganis  Z. Kne?evi? 《Icarus》2007,186(2):484-497
The family of (490) Veritas is a young, dynamically heterogeneous asteroid family, located in the outer main belt. As such, it represents a valuable example for studying the effects of chaotic diffusion on the shape of asteroid families. The Veritas family can be decomposed into several groups, in terms of the principal mechanisms that govern the local dynamics, which are analyzed here. A relatively large spread in proper eccentricity is observed, for the members of two chaotic groups. We show that different types of chaos govern the motion of bodies within each group, depending on the extent of overlap among the components of the corresponding resonant multiplets. In particular, one group appears to be strongly diffusive, while the other is not. Studying the evolution of the diffusive group and applying statistical methods, we estimate the age of the family to be τ=(8.7±1.7) Myr. This value is statistically compatible with that of 8.3 Myr previously derived by Nesvorný et al. [Nesvorný, D., Bottke, W.F., Levison, H.F., Dones, L., 2003. Astrophys. J. 591, 486-497], who analyzed the secular evolution of family members on regular orbits. Our methodology, applied here in the case of the Veritas family, can be used to reconstruct the orbital history of other, dynamically complex, asteroid families and derive approximate age estimates for young asteroid families, located in diffusive regions of the main belt. Possible refinements of the method are also discussed.  相似文献   
39.
V. Carruba  J.A. Burns  W. Bottke 《Icarus》2003,162(2):308-327
Asteroid families are groupings of minor planets identified by clustering in their proper orbital elements; these objects have spectral signatures consistent with an origin in the break-up of a common parent body. From the current values of proper semimajor axes a of family members one might hope to estimate the ejection velocities with which the fragments left the putative break-up event (assuming that the pieces were ejected isotropically). However, the ejection velocities so inferred are consistently higher than N-body and hydro-code simulations, as well as laboratory experiments, suggest. To explain this discrepancy between today’s orbital distribution of asteroid family members and their supposed launch velocities, we study whether asteroid family members might have been ejected from the collision at low speeds and then slowly drifted to their current positions, via one or more dynamical processes. Studies show that the proper a of asteroid family members can be altered by two mechanisms: (i) close encounters with massive asteroids, and (ii) the Yarkovsky non-gravitational effect. Because the Yarkovsky effect for kilometer-sized bodies decreases with asteroid diameter D, it is unlikely to have appreciably moved large asteroids (say those with D > 15 km) over the typical family age (1-2 Gyr).For this reason, we numerically studied the mobility of family members produced by close encounters with main-belt, non-family asteroids that were thought massive enough to significantly change their orbits over long timescales. Our goal was to learn the degree to which perturbations might modify the proper a values of all family members, including those too large to be influenced by the Yarkovsky effect. Our initial simulations demonstrated immediately that very few asteroids were massive enough to significantly alter relative orbits among family members. Thus, to maximize gravitational perturbations in our 500-Myr integrations, we investigated the effect of close encounters on two families, Gefion and Adeona, that have high encounter probabilities with 1 Ceres, by far the largest asteroid in the main belt. Our results show that members of these families spreads in a of less than 5% since their formation. Thus gravitational interactions cannot account for the large inferred escape velocities.The effect of close encounters with massive asteroids is, however, not entirely negligible. For about 10% of the simulated bodies, close encounters increased the “inferred” ejection velocities from sub-100 m/s to values greater than 100 m/s, beyond what hydro-code and N-body simulations suggest are the maximum possible initial ejection velocity for members of Adeona and Gefion with D > 15 km. Thus this mechanism of mobility may be responsible for the unusually high inferred ejection speeds of a few of the largest members of these two families.To understand the orbital evolution of the entire family, including smaller members, we also performed simulations to account for the drift of smaller asteroids caused by the Yarkovsky effect. Our two sets of simulations suggest that the two families we investigated are relatively young compared to larger families like Koronis and Themis, which have estimated ages of about 2 Byr. The Adeona and Gefion families seems to be no more than 600 and 850 Myr old, respectively.  相似文献   
40.
At present, approximately 1500 asteroids are known to evolve inside or sticked to the exterior 1:2 resonance with Mars at a ? 2.418 AU, being (142) Polana the largest member of this group. The effect of the forced secular modes superposed to the resonance gives rise to a complex dynamical evolution. Chaotic diffusion, collisions, close encounters with massive asteroids and mainly orbital migration due to the Yarkovsky effect generate continuous captures to and losses from the resonance, with a fraction of asteroids remaining captured over long time scales and generating a concentration in the semimajor axis distribution that exceeds by 20% the population of background asteroids. The Yarkovsky effect induces different dynamics according to the asteroid size, producing an excess of small asteroids inside the resonance. The evolution in the resonance generates a signature on the orbits, mainly in eccentricity, that depends on the time the asteroid remains captured inside the resonance and on the magnitude of the Yarkovsky effect. The greater the asteroids, the larger the time they remain captured in the resonance, allowing greater diffusion in eccentricity and inclination. The resonance generates a discontinuity and mixing in the space of proper elements producing misidentification of dynamical family members, mainly for Vesta and Nysa-Polana families. The half-life of resonant asteroids large enough for not being affected by the Yarkovsky effect is about 1 Gyr. From the point of view of taxonomic classes, the resonant population does not differ from the background population and the excess of small asteroids is confirmed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号