首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   433篇
  免费   1篇
  国内免费   38篇
测绘学   16篇
大气科学   4篇
地球物理   8篇
地质学   57篇
海洋学   4篇
天文学   378篇
综合类   2篇
自然地理   3篇
  2022年   1篇
  2020年   2篇
  2019年   2篇
  2018年   3篇
  2017年   9篇
  2016年   4篇
  2015年   13篇
  2014年   8篇
  2013年   12篇
  2012年   5篇
  2011年   53篇
  2010年   64篇
  2009年   53篇
  2008年   46篇
  2007年   42篇
  2006年   35篇
  2005年   28篇
  2004年   33篇
  2003年   23篇
  2002年   7篇
  2001年   2篇
  2000年   2篇
  1998年   1篇
  1996年   6篇
  1995年   5篇
  1994年   6篇
  1992年   3篇
  1990年   2篇
  1984年   1篇
  1978年   1篇
排序方式: 共有472条查询结果,搜索用时 31 毫秒
411.
832 Karin is the largest member of the young Karin cluster that formed 5.75±0.05 Myr ago in the outer main belt. Surprisingly, recent near-IR spectroscopy measurements [Sasaki, T., Sasaki, S., Watanabe, J., Sekiguchi, T., Yoshida, F., Kawakita, H., Fuse, T., Takato, N., Dermawan, B., Ito, T., 2004. Astrophys. J. 615 (2), L161-L164] revealed that Karin's surface shows different colors as a function of rotational phase. It was interpreted that 832 Karin shows us the reddish space-weathered exterior surface of the parent body as well as an interior face, which has not had time to become space-weathered. This result is at odds with recent results including seismic and geomorphic modeling, modeling of the Karin cluster formation and measurements of the space weathering rate. Consequently, we aimed to confirm/infirm this surprising result by sampling Karin's spectrum well throughout its rotation. Here, we present new visible (0.45-0.95 μm) and near-infrared (0.7-2.5 μm) spectroscopic observations of 832 Karin obtained in January and April 2006, covering most of Karin's longitudes. In the visible range, we find that Karin shows no rotational spectral variations. Similarly, we find that Karin exhibits very little (to none) spectral variations with rotation in the near-IR range. Our results imply that 832 Karin has a homogeneous surface, in terms of composition and surface age. Our results also imply that the impact that generated the family refreshed entirely Karin's surface, and probably the surfaces of all members.  相似文献   
412.
In this work we analyze the bias-corrected taxonomic distribution of asteroids in the Main Belt based on the results of two large spectroscopic surveys with a total of 2026 objects. With the goal of minimizing selection effects that could affect our results, analyses were also performed on a sample from which the dynamical families and the small objects were removed.Our results differ significantly from the majority of previous work. The most notable difference concerns the distribution in semi-major axis of the S class (and its subtypes), found to compose a significant fraction of the asteroid population out to 3.0 AU.Also, we found differences in the distribution of the classes as we considered varying ranges of eccentricities and inclinations.  相似文献   
413.
J.P Emery  R.H Brown 《Icarus》2003,164(1):104-121
We present new near-infrared spectra of 20 Trojan asteroids. The spectra were recorded at the NASA Infrared Telescope Facility (IRTF) using the recently commissioned medium-resolution spectrograph SpeX and at the Multiple Mirror Telescope (MMT) using the instrument FSPEC. Spectra of all of these objects were measured in K-band (1.95-2.5 μm), 8 of these in L-band (2.8-4.0 μm), and 14 in the range 0.8-2.5 μm. These observations nearly double the number of published 0.8-2.5 μm spectra of Trojan asteroids and provide the first systematic study of the L-band region for these distant asteroids. The data show that the red spectral slope measured in the near-IR extends through the L-band, though it is not as steep here as at shorter wavelengths. A significant diversity is apparent in the near-IR spectral slopes of this sampling of objects. Most of the spectra do not contain any definitive absorption features characteristic of surface composition (e.g., H2O, organics, silicates) as seen on main-belt asteroids and several Centaur and Kuiper Belt objects. A few objects may display spectral activity, and the reliability of these possible features is discussed. While these spectra are generally compatible with silicate surfaces to explain the spectral slope mixed with some fraction of low albedo material, there is no absolute indication of silicates. The spectral slope could also be explained by the presence of hydrocarbons, but the lack of absorption features, especially in L-band where very strong fundamental absorptions from these molecules appear, constrains the character and abundance of these materials at the surface.  相似文献   
414.
The J = 3-2 rotational line of CO in Neptune has been measured using the heterodyne receiver B3 at the JCMT. The spectral resolution was 1.25 MHz and 25 tunings were used to cover a frequency range of almost 20 GHz. The measured line shape, encompassing both the broad absorption feature arising in the lower atmosphere and a narrow emission core from the upper stratosphere, indicates that the CO mole ratio is not uniform with altitude, with best-fit values of in the upper stratosphere and 0.6±0.4×10−6 in the lower stratosphere and troposphere. The higher stratospheric abundance indicates that a dual, internal and external, origin of CO is most likely.  相似文献   
415.
We present observations of Ceres over the 2.2-4.0 μm region taken using the SpeX instrument on the NASA IRTF in 2005. The observations cover Ceres’ entire longitude range and show evidence for a relatively uniform surface in terms of Ceres’ composition, however there is a subtle but consistently shallower band depth over longitudes associated with bright regions in HST maps, suggesting those areas are slightly less carbonate- and brucite-rich. We also find Ceres’ beaming parameter, a measure of its thermal properties, to have changed with its viewing aspect.  相似文献   
416.
We present a detailed analysis of the variations in spectral properties across the surface of Saturn’s satellite Dione using Cassini/VIMS data and their relationships to geological and/or morphological characteristics as seen in the Cassini/ISS images. This analysis focuses on a local region on Dione’s anti-saturnian hemisphere that was observed by VIMS with high spatial resolution during orbit 16 in October 2005. The results are incorporated into a global context provided by VIMS data acquired within Cassini’s first 50 orbits. Our results show that Dione’s surface is dominated by at least one global process. Bombardment by magnetospheric particles is consistent with the concentration of dark material and enhanced CO2 absorption on the trailing hemisphere of Dione independent of the geology. Local regions within this terrain indicate a special kind of resurfacing that probably is related to large-scale impact process. In contrast, the enhanced ice signature on the leading side is associated with the extended ejecta of the fresh impact crater Creusa (∼49°N/76°W). Although no geologically active regions could be identified, Dione’s tectonized regions observed with high spatial resolution partly show some clean H2O ice implying that tectonic processes could have continued into more recent times.  相似文献   
417.
We analyze observations taken with Cassini’s Visual and Infrared Mapping Spectrometer (VIMS), to determine the current methane and haze latitudinal distribution between 60°S and 40°N. The methane variation was measured primarily from its absorption band at 0.61 μm, which is optically thin enough to be sensitive to the methane abundance at 20-50 km altitude. Haze characteristics were determined from Titan’s 0.4-1.6 μm spectra, which sample Titan’s atmosphere from the surface to 200 km altitude. Radiative transfer models based on the haze properties and methane absorption profiles at the Huygens site reproduced the observed VIMS spectra and allowed us to retrieve latitude variations in the methane abundance and haze. We find the haze variations can be reproduced by varying only the density and single scattering albedo above 80 km altitude. There is an ambiguity between methane abundance and haze optical depth, because higher haze optical depth causes shallower methane bands; thus a family of solutions is allowed by the data. We find that haze variations alone, with a constant methane abundance, can reproduce the spatial variation in the methane bands if the haze density increases by 60% between 20°S and 10°S (roughly the sub-solar latitude) and single scattering absorption increases by 20% between 60°S and 40°N. On the other hand, a higher abundance of methane between 20 and 50 km in the summer hemisphere, as much as two times that of the winter hemisphere, is also possible, if the haze variations are minimized. The range of possible methane variations between 27°S and 19°N is consistent with condensation as a result of temperature variations of 0-1.5 K at 20-30 km. Our analysis indicates that the latitudinal variations in Titan’s visible to near-IR albedo, the north/south asymmetry (NSA), result primarily from variations in the thickness of the darker haze layer, detected by Huygens DISR, above 80 km altitude. If we assume little to no latitudinal methane variations we can reproduce the NSA wavelength signatures with the derived haze characteristics. We calculate the solar heating rate as a function of latitude and derive variations of ∼10-15% near the sub-solar latitude resulting from the NSA. Most of the latitudinal variations in the heating rate stem from changes in solar zenith angle rather than compositional variations.  相似文献   
418.
We report the detailed analysis of the spectrophotometric properties of Saturn’s icy satellites as derived by full-disk observations obtained by visual and infrared mapping spectrometer (VIMS) experiment aboard Cassini. In this paper, we have extended the coverage until the end of the Cassini’s nominal mission (June 1st 2008), while a previous paper (Filacchione, G., and 28 colleagues [2007]. Icarus 186, 259-290, hereby referred to as Paper I) reported the preliminary results of this study.During the four years of nominal mission, VIMS has observed the entire population of Saturn’s icy satellites allowing us to make a comparative analysis of the VIS-NIR spectral properties of the major satellites (Mimas, Enceladus, Tethys, Dione, Rhea, Hyperion, Iapetus) and irregular moons (Atlas, Prometheus, Pandora, Janus, Epimetheus, Telesto, Calypso, Phoebe). The results we discuss here are derived from the entire dataset available at June 2008 which consists of 1417 full-disk observations acquired from a variety of distances and inclinations from the equatorial plane, with different phase angles and hemispheric coverage. The most important spectrophotometric indicators (as defined in Paper I: I/F continua at 0.55 μm, 1.822 μm and 3.547 μm, visible spectral slopes, water and carbon dioxide bands depths and positions) are calculated for each observation in order to investigate the disk-integrated composition of the satellites, the distribution of water ice respect to “contaminants” abundances and typical regolith grain properties. These quantities vary from the almost pure water ice surfaces of Enceladus and Calypso to the organic and carbon dioxide rich Hyperion, Iapetus and Phoebe. Janus visible colors are intermediate between these two classes having a slightly positive spectral slope. These results could help to decipher the origins and evolutionary history of the minor moons of the Saturn’s system. We introduce a polar representation of the spectrophotometric parameters as function of the solar phase angle (along radial distance) and of the effective longitude interval illuminated by the Sun and covered by VIMS during the observation (in azimuth) to better investigate the spatial distribution of the spectrophotometric quantities across the regular satellites hemispheres. Finally, we report the observed spectral positions of the 4.26 μm band of the carbon dioxide present in the surface material of three outermost moons Hyperion, Iapetus and Phoebe.  相似文献   
419.
We present an analysis comparing observations acquired by the Mars Express Observatoire pour la Minéralogie l’Eau, les Glaces et l’Activité (OMEGA) and Phoenix lander measurements. Analysis of OMEGA data provides evidence for hydrous and ferric phases at the Phoenix landing site and the surrounding regions. The 3 μm hydration band deepens with increasing latitude, along with the appearance and deepening of a 1.9 μm H2O band as latitude increases ∼60° polewards. A water content of 10-11% is derived from the OMEGA data for the optical surface at the Phoenix landing site compared to 1-2% derived for subsurface soil by Phoenix lander measurements. The hydration of these regions is best explained by surface adsorbed water onto soil grains. No evidence for carbonate or perchlorate-bearing phases is evident from OMEGA data, consistent with the relatively small abundances of these phases detected by Phoenix. The identification of spectral features consistent with hydrated phases (possibly zeolites) from OMEGA data covering regions outside the landing site and the ubiquitous ferric absorption edge suggest that chemical weathering may play a role in the arctic soils.  相似文献   
420.
Several hydrated silicate deposits on Mars are observed within craters and are interpreted as excavated Noachian material. Toro crater (71.8°E, 17.0°N), located on the northern edge of the Syrtis Major Volcanic Plains, shows spectral and morphologic evidence of impact-induced hydrothermal activity. Spectroscopic observations were used to identify extensive hydrated silicate deposits, including prehnite, chlorites, smectites, and opaline material, a suite of phases that frequently results from hydrothermal alteration in terrestrial craters and also expected on Mars from geochemical modeling of hydrothermal environments. When combined with altimetry and high-resolution imaging data, these deposits appear associated predominantly with the central uplift and with portions of the northern part of the crater floor. Detailed geologic mapping of these deposits reveals geomorphic features that are consistent with hydrothermal activity that followed the impact event, including vent-like and conical mound structures, and a complex network of tectonic structures caused by fluid interactions such as fractures and joints. The crater age has been calculated from the cumulative crater size-frequency distributions and is found to be Early Hesperian. The evidence presented here provides support for impact-induced hydrothermal activity in Toro crater, that extends phyllosilicate formation processes beyond the Noachian era.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号