首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   433篇
  免费   1篇
  国内免费   38篇
测绘学   16篇
大气科学   4篇
地球物理   8篇
地质学   57篇
海洋学   4篇
天文学   378篇
综合类   2篇
自然地理   3篇
  2022年   1篇
  2020年   2篇
  2019年   2篇
  2018年   3篇
  2017年   9篇
  2016年   4篇
  2015年   13篇
  2014年   8篇
  2013年   12篇
  2012年   5篇
  2011年   53篇
  2010年   64篇
  2009年   53篇
  2008年   46篇
  2007年   42篇
  2006年   35篇
  2005年   28篇
  2004年   33篇
  2003年   23篇
  2002年   7篇
  2001年   2篇
  2000年   2篇
  1998年   1篇
  1996年   6篇
  1995年   5篇
  1994年   6篇
  1992年   3篇
  1990年   2篇
  1984年   1篇
  1978年   1篇
排序方式: 共有472条查询结果,搜索用时 15 毫秒
431.
The origin of the similarly-sized binary Asteroid (90) Antiope remains an unsolved puzzle. To constrain the origin of this unique double system, we recorded individual spectra of the components using SPIFFI, a near-infrared integral field spectrograph fed by SINFONI, an adaptive optics module available on VLT-UT4. Using our previously published orbital model, we requested telescope time when the separation of the components of (90) Antiope was larger than 0.087″, to minimize the contamination between components, during the February 2009 opposition. Several multi-spectral data-cubes in J band (SNR = 40) and H + K band (SNR = 100) were recorded in three epochs and revealed the two components of (90) Antiope. After developing a specific photometric extraction method and running an error analysis by Monte-Carlo simulations, we successfully extracted reliable spectra of both components from 1.1 to 2.4 μm taken on the night of February 21, 2009. These spectra do not display any significant absorption features due to mafic mineral, ices, or organics, and their slopes are in agreement with both components being C- or Cb-type asteroids. Their constant flux ratio indicates that both components’ surface reflectances are quite similar, with a 1-sigma variation of 7%. By comparison with 2MASS J, H, K color distribution of observed Themis family members, we conclude that both bodies were most likely formed at the same time and from the same material. The similarly-sized system could indeed be the result of the breakup of a rubble-pile proto-Antiope into two equal-sized bodies, but other scenarios of formation implying a common origin should also be considered.  相似文献   
432.
A Large Program (LP) has been carried out at ESO-VLT using almost simultaneously the UT1, UT2 and UT4 telescopes (Cerro Paranal, Chile). The aim of this Large Program was to obtain simultaneous visible and near-IR spectroscopic measurements (using FORS, ISAAC and SINFONI instruments) with a S/N ratio as high as possible for almost all objects among different dynamical groups observable within the VLT capability.In this paper we present results on the second half of the Large Program which includes new near-infrared spectroscopy data of 20 objects. For 12 of them for which we had obtained the complete spectral range (V + J + H + K bands), we apply a radiative transfer model to the entire spectral range to constrain their surface composition.We also present an analysis of all near-IR spectral data available on TNOs and Centaurs from both the complete LP and the literature. An overview for a total sample of 75 objects is thus carried out analyzing the ice content with respect to the physical and dynamical characteristics. The major new results are: (i) all objects classified as BB class seem to have icy surfaces; (ii) the possible presence of CH3OH has primarily been detected on very red surfaces (RR class objects) and (iii) the majority of Centaurs observed multiple times have an heterogeneous composition.  相似文献   
433.
Laser-induced breakdown spectroscopy (LIBS) was used to quantitatively analyze 195 rock slab samples with known bulk chemical compositions, 90 pressed-powder samples derived from a subset of those rocks, and 31 pressed-powder geostandards under conditions that simulate the ChemCam instrument on the Mars Science Laboratory Rover (MSL), Curiosity. The low-volatile (<2 wt.%) silicate samples (90 rock slabs, corresponding powders, and 22 geostandards) were split into training, validation, and test sets. The LIBS spectra and chemical compositions of the training set were used with three multivariate methods to predict the chemical compositions of the test set. The methods were partial least squares (PLS), multilayer perceptron artificial neural networks (MLP ANNs) and cascade correlation (CC) ANNs. Both the full LIBS spectrum and the intensity at five pre-selected spectral channels per major element (feature selection) were used as input data for the multivariate calculations. The training spectra were supplied to the algorithms without averaging (i.e. five spectra per target) and with averaging (i.e. all spectra from the same target averaged and treated as one spectrum). In most cases neural networks did not perform better than PLS for our samples. PLS2 without spectral averaging outperformed all other procedures on the basis of lowest quadrature root mean squared error (RMSE) for both the full test set and the igneous rocks test set. The RMSE for PLS2 using the igneous rock slab test set is: 3.07 wt.% SiO2, 0.87 wt.% TiO2, 2.36 wt.% Al2O3, 2.20 wt.% Fe2O3, 0.08 wt.% MnO, 1.74 wt.% MgO, 1.14 wt.% CaO, 0.85 wt.% Na2O, 0.81 wt.% K2O. PLS1 with feature selection and averaging had a higher quadrature RMSE than PLS2, but merits further investigation as a method of reducing data volume and computation time and potentially improving prediction accuracy, particularly for samples that differ significantly from the training set. Precision and accuracy were influenced by the ratio of laser beam diameter (∼490 μm) to grain size, with coarse-grained rocks often resulting in lower accuracy and precision than analyses of fine-grained rocks and powders. The number of analysis spots that were normally required to produce a chemical analysis within one standard deviation of the true bulk composition ranged from ∼10 for fine-grained rocks to >20 for some coarse-grained rocks.  相似文献   
434.
435.
We report on low-spectral resolution observations of Comet 9P/Tempel 1 from 1983, 1989, 1994 and 2005 using the 2.7 m Harlan J. Smith telescope of McDonald Observatory. This comet was the target of NASA's Deep Impact mission and our observations allowed us to characterize the comet prior to the impact. We found that the comet showed a decrease in gas production from 1983 to 2005, with the decrease being different factors for different species. OH decreased by a factor 2.7, NH by 1.7, CN by 1.6, C3 by 1.8, CH by 1.4 and C2 by 1.3. Despite the decrease in overall gas production and these slightly different decrease factors, we find that the gas production rates of OH, NH, C3, CH and C2 ratioed to that of CN were constant over all of the apparitions. We saw no change in the production rate ratios after the impact. We found that the peak gas production occurred about two months prior to perihelion. Comet Tempel 1 is a “normal” comet.  相似文献   
436.
Titan is known to have a young surface. Here we present evidence from the Cassini Visual and Infrared Mapping Spectrometer that it is currently geologically active. We report that changes in the near-infrared reflectance of a 73,000 km2 area on Titan (latitude 26° S, longitude 78° W) occurred between July 2004 and March of 2006. The reflectance of the area increased by a factor of two between July 2004 and March-April 2005; it then returned to the July 2004 level by November 2005. By late December 2005 the reflectance had surged upward again, establishing a new maximum. Thereafter, it trended downward for the next three months. Detailed spectrophotometric analyses suggest these changes happen at or very near the surface. The spectral differences between the region and its surroundings rule out changes in the distribution of the ices of reasonably expected materials such as H2O, CO2, and CH4 as possible causes. Remarkably, the change is spectrally consistent with the deposition and removal of NH3 frost over a water ice substrate. NH3 has been proposed as a constituent of Titan's interior and has never been reported on the surface. The detection of NH3 frost on the surface might possibly be explained by episodic effusive events occur which bring juvenile ammonia from the interior to the surface. If so, its decomposition would feed nitrogen to the atmosphere now and in the future. The lateral extent of the region exceeds that of active areas on the Earth (Hawaii) or Io (Loki).  相似文献   
437.
Jeremy Bailey 《Icarus》2009,201(2):444-453
The discovery of the near infrared windows into the Venus deep atmosphere has enabled the use of remote sensing techniques to study the composition of the Venus atmosphere below the clouds. In particular, water vapor absorption lines can be observed in a number of the near-infrared windows allowing measurement of the H2O abundance at several different levels in the lower atmosphere. Accurate determination of the abundance requires a good database of spectral line parameters for the H2O absorption lines at the high temperatures (up to ∼700 K) encountered in the Venus deep atmosphere. This paper presents a comparison of a number of H2O line lists that have been, or that could potentially be used, to analyze Venus deep atmosphere water abundances and shows that there are substantial discrepancies between them. For example, the early high-temperature list used by Meadows and Crisp [Meadows, V.S., Crisp, D., 1996. J. Geophys. Res. 101 (E2), 4595-4622] had large systematic errors in line intensities. When these are corrected for using the more recent high-temperature BT2 list of Barber et al. [Barber, R.J., Tennyson, J., Harris, G.J., Tolchenov, R.N., 2006. Mon. Not. R. Astron. Soc. 368, 1087-1094] their value of 45±10 ppm for the water vapor mixing ratio reduces to 27±6 ppm. The HITRAN and GEISA lists used for most other studies of Venus are deficient in “hot” lines that become important in the Venus deep atmosphere and also show evidence of systematic errors in line intensities, particularly for the 8000 to 9500 cm−1 region that includes the 1.18 μm window. Water vapor mixing ratios derived from these lists may also be somewhat overestimated. The BT2 line list is recommended as being the most complete and accurate current representation of the H2O spectrum at Venus temperatures.  相似文献   
438.
R. Brunetto  T. Pino  A.-T. Cao  G. Strazzulla 《Icarus》2009,200(1):323-3884
We use a low pressure flame to produce soot by-products as possible analogues of the carbonaceous dust present in diverse astrophysical environments, such as circumstellar shells, diffuse interstellar medium, planetary disks, as well as in our own Solar System. Several soot samples, displaying an initial chemical diversity from aromatic to aliphatic dominated material, are irradiated with 200-400 keV H+, He+, and Ar++ ions, with fluences comprised between 1014 and 1016 ions/cm2, to simulate expected radiation induced modification on extraterrestrial carbon. The evolution of the samples is monitored using Raman spectroscopy, before, during, and after irradiation. A detailed analysis of the first- and second-order Raman spectra is performed, using a fitting combination of Lorentzian and/or Gaussian-shaped bands. Upon irradiation, the samples evolve toward an amorphous carbon phase. The results suggest that the observed variations are more related to vacancy formation than ionization processes. A comparison with Raman spectra of extraterrestrial organic matter and other irradiation experiments of astrophysically relevant carbonaceous materials is presented. The results are consistent with previous experiments showing mostly amorphization of various carbonaceous materials. Irradiated soots have Raman spectra similar to those of some meteorites, IDPs, and Comet Wild 2 grains collected by the Stardust mission. Since the early-Sun expected irradiation fluxes sufficient for amorphization are compatible with accretion timescales, our results support the idea that insoluble organic matter (IOM) observed in primitive meteorites has experienced irradiation-induced amorphization prior to the accretion of the parent bodies, emphasizing the important role played by early solar nebula processing.  相似文献   
439.
Ultraviolet (UV) spectra of Saturn's aurora obtained with the Hubble Space Telescope Imaging Spectrograph (STIS), the Cassini Ultraviolet Imaging Spectrograph (UVIS) and the Far Ultraviolet Spectroscopic Explorer (FUSE) have been analyzed. Comparisons between the observed spectra and synthetic models of electron-excited H2 have been used to determine various auroral characteristics. Far ultraviolet (FUV: 1200-1700 Å) STIS and UVIS spectra exhibit, below 1400 Å, weak absorption due to methane, with a vertical column ranging between 1.4×1015 and . Using the low-latitude Moses et al. [Moses, J.I., Bézard, B., Lellouch, E., Feuchtgruber, H., Gladstone, G.R., Allen, M., 2000. Icarus, 143, 244-298] atmospheric model of Saturn and an electron energy-H2 column relationship, these methane columns are converted into the mean energy of the primary precipitating electrons, estimated to lie in the range 10-18 keV. This result is confirmed by the study of self-absorption with UVIS and FUSE extreme ultraviolet (EUV: 900-1200 Å) spectra. Below 1200 Å, it is seen that transitions connecting to the v<2 vibrational levels of the H2 electronic ground state are partially self-absorbed by H2 molecules overlying the auroral emission. Because of its low spectral resolution (∼5.5 Å), the UVIS EUV spectrum we analyzed does not allow us to unequivocally determine reasonable ranges of temperatures and H2 columns. On the other hand, the high spectral resolution (∼0.2 Å) of the FUSE LiF1a and LiF2a EUV spectra we examined resolve the H2 rotational lines and makes it possible to determine the H2 temperature. The modeled spectrum best fitting the FUSE LiF1a observation reveals a temperature of 500 K and self-absorption by a H2 vertical column of . When converted to energy of precipitating electrons, this H2 column corresponds to primary electrons of ∼10 keV. The model that best fits the LiF2a spectrum is characterized by a temperature of 400 K and is not self-absorbed, making this segment ideal to determine the H2 temperature at the altitude of the auroral emission. The latter value is in agreement with temperatures obtained from infrared polar spectra. Self-absorption is detectable in the LiF2a segment for H2 columns exceeding , which sets the maximum mean energy determined from the FUSE observations to ∼15 keV. The total electron energy range of 10-18 keV deduced from FUV and EUV observations places the auroral emission peak between the 0.1 and 0.3 μbar pressure levels. These values should be seen as an upper limit, since most of the Voyager UVS spectra of Saturn's aurora examined by Sandel et al. [Sandel, B.R., Shemansky, D.E., Broadfoot, A.L., Holberg, J.B., Smith, G.R., 1982. Science 215, 548] do not exhibit methane absorption. The auroral H2 emission is thus likely located above but close to the methane homopause. The H2 auroral brightness in the 800-1700 Å bandwidth varies from 2.9 kR to 139 kR, comparable to values derived from FUV Faint Object Camera (FOC) and STIS images.  相似文献   
440.
Polar regions on Mars are the most suitable places to observe water vapor daily variability because in any observation crossing the Pole we can observe very different local time and because the poles are considered to be the main permanent and seasonal water reservoir of the planet. We report on a daily variability of water vapor in the South Pole Region (SPR), observed by OMEGA/Mars Express during the south spring-summer period (Ls∼250°-270°) outside the CO2 ice cap, that has never been observed before by other instruments. We have been able to estimate an increase of few precipitable microns during the day. A possible scenario includes the presence of regolith, or another component that could gather water from the atmosphere, adsorbing the water into the surface during the night time and desorbing it as soon as the Sun reaches sufficient height to heat the ground. This hypothesis is even more plausible considering the presence of observed local enhancements in the morning sections associated with the illumination of the Sun and the total absence in the data for water ice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号