首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   416篇
  免费   0篇
天文学   416篇
  2011年   2篇
  2010年   1篇
  2009年   48篇
  2008年   26篇
  2007年   45篇
  2006年   47篇
  2005年   31篇
  2004年   36篇
  2003年   40篇
  2002年   31篇
  2001年   37篇
  2000年   18篇
  1999年   25篇
  1998年   24篇
  1995年   1篇
  1994年   1篇
  1992年   3篇
排序方式: 共有416条查询结果,搜索用时 31 毫秒
21.
We present the results of a numerical code that combines multi-zone chemical evolution with 1D hydrodynamics to follow in detail the evolution and radial behaviour of gas and stars during the formation of elliptical galaxies. We use the model to explore the links between the evolution and formation of elliptical galaxies and QSO activity. The knowledge of the radial gas flows in the galaxy allows us to trace metallicity gradients, and, in particular, the formation of a high-metallicity core in ellipticals. The high-metallicity core is formed soon enough to explain the metal abundances inferred in high-redshift quasars. The star formation rate and the subsequent feedback regulate the episodes of wind, outflow and cooling flow, thus affecting the recycling of the gas and the chemical enrichment of the intergalactic medium. The evolution of the galaxy shows several stages, some of which are characterized by a complex flow pattern, with inflow in some regions and outflow in other regions. All models, however, exhibit during their late evolution a galactic wind at the outer boundary and, during their early evolution, an inflow towards the galactic nucleus. The characteristics of the inner inflow could explain the bolometric luminosity of a quasar lodged at the galactic centre as well as the evolution of the optical luminosity of quasars.  相似文献   
22.
23.
We present the first 3D observations of a diffuse elliptical galaxy (dE). The good quality data (S/N up to 40) reveal the kinematical signature of an embedded stellar disc, reminiscent of what is commonly observed in elliptical galaxies, though similarity of their origins is questionable. Colour map built from Hubble Space Telescope Advanced Camera for Surveys (ACS) images confirms the presence of this disc. Its characteristic scale (about 3 arcsec =250 pc) is about a half of galaxy's effective radius, and its metallicity is 0.1–0.2 dex larger than the underlying population. Fitting the spectra with synthetic single stellar populations (SSP), we found an SSP-equivalent age of 5 Gyr and nearly solar metallicity [Fe/H]  =−0.06  dex. We checked that these determinations are consistent with those based on Lick indices, but have smaller error bars. The kinematical discovery of a stellar disc in dE gives additional support to an evolutionary link from dwarf irregular galaxies due to stripping of the gas against the intracluster medium.  相似文献   
24.
We model the mass distribution in the recently discovered Einstein ring LBG J213512.73−010143 (the 'Cosmic Eye') using archival Hubble Space Telescope imaging. We reconstruct the mass density profile of the z = 0.73 lens and the surface brightness distribution of the z = 3.07 source and find that the observed ring is best fitted with a dual-component lens model consisting of a baryonic Sersic component nested within a dark matter halo. The dark matter halo has an inner slope of 1.42+0.24−0.22, consistent with cold dark matter simulations after allowing for baryon contraction. The baryonic component has a mass-to-light ratio of  1.71+0.28−0.38 M/L B   which when evolved to the present day is in agreement with local ellipticals. Within the Einstein radius of 0.77 arcsec (5.6 kpc), the baryons account for 46 ± 11 per cent of the projected lens mass. External shear from a nearby foreground cluster is accurately predicted by the model. The reconstructed surface brightness distribution in the source plane clearly shows two peaks. Through a generalization of our lens inversion method, we conclude that the redshifts of both peaks are consistent with each other, suggesting that we are seeing structure within a single galaxy.  相似文献   
25.
26.
27.
We present Galaxy Evolution Explorer ( GALEX ) far-ultraviolet (FUV) and near-ultraviolet (NUV) imaging of the nearby early-type galaxy NGC 2974, along with complementary ground-based optical imaging. In the ultraviolet, the galaxy reveals a central spheroid-like component and a newly discovered complete outer ring of radius 6.2 kpc, with suggestions of another partial ring at an even larger radius. Blue FUV–NUV and UV-optical colours are observed in the centre of the galaxy and from the outer ring outwards, suggesting young stellar populations (≲1 Gyr) and recent star formation in both locations. This is supported by a simple stellar population model which assumes two bursts of star formation, allowing us to constrain the age, mass fraction and surface mass density of the young component pixel by pixel. Overall, the mass fraction of the young component appears to be just under 1 per cent (lower limit, uncorrected for dust extinction). The additional presence of a nuclear and an inner ring (radii 1.4 and 2.9 kpc, respectively), as traced by [O  iii ] emission, suggests ring formation through resonances. All three rings are consistent with a single pattern speed of  78 ± 6  km s−1 kpc−1, typical of S0 galaxies and only marginally slower than expected for a fast bar if traced by a small observed surface brightness plateau. This thus suggests that star formation and morphological evolution in NGC 2974 at the present epoch are primarily driven by a rotating asymmetry (probably a large-scale bar), despite the standard classification of NGC 2974 as an E4 elliptical.  相似文献   
28.
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号