首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   933篇
  免费   129篇
  国内免费   65篇
测绘学   76篇
大气科学   67篇
地球物理   294篇
地质学   245篇
海洋学   56篇
天文学   312篇
综合类   49篇
自然地理   28篇
  2024年   3篇
  2023年   2篇
  2022年   11篇
  2021年   3篇
  2020年   16篇
  2019年   13篇
  2018年   20篇
  2017年   30篇
  2016年   39篇
  2015年   43篇
  2014年   24篇
  2013年   35篇
  2012年   45篇
  2011年   30篇
  2010年   26篇
  2009年   42篇
  2008年   43篇
  2007年   45篇
  2006年   66篇
  2005年   66篇
  2004年   50篇
  2003年   67篇
  2002年   62篇
  2001年   54篇
  2000年   55篇
  1999年   54篇
  1998年   33篇
  1997年   28篇
  1996年   18篇
  1995年   15篇
  1994年   16篇
  1993年   22篇
  1992年   6篇
  1991年   13篇
  1990年   19篇
  1989年   4篇
  1988年   4篇
  1987年   3篇
  1983年   1篇
  1981年   1篇
排序方式: 共有1127条查询结果,搜索用时 31 毫秒
941.
刘一鸣 《气象》2015,41(11):1398-1407
利用2012年5月1日至7月31日全国自动气象站两种来源实时上传资料中的“非缺测不一致”小时降水数据,详查了问题的产生原因,为在实时拼接过程中高效判断数据正确性,提出较小尺度时间序列求证比对模型(IVSA):当同一时间同一台站的两种来源小时降水值发生不一致时,首先在较小时间尺度(分钟级)序列上使用内部一致性检查方法分别求证小时降水的正确性;当各自在较小时间尺度序列均无法证伪时,将单元出错概率引入两分钟降水序列的比对过程,并据此竞优遴选得出较为可靠的小时降水数据。指出:(1)产生非缺测不一致问题的原因主要有生成报文时观测数据不全、报文处理环节不一致、台站信息不正确三类。(2)使用2012年5月1360组实例形成IVSA模型参数后,模型在2012年6—7月的4017组非缺测不一致数据中取得了99.65%的判断准确率。通过IVSA模型,非缺测不一致的小时降水数据取舍问题可在分钟降水序列比对中找出答案。  相似文献   
942.
One major difficulty in seepage analyses is finding the position of phreatic surface which is unknown at the beginning of solution and must be determined in an iterative process. The objective of the present study is to develop a novel non‐boundary‐fitted mesh finite‐element method capable of solving the unconfined seepage problem in domains with arbitrary geometry and continuously varied permeability. A new non‐boundary‐fitted finite element method named as smoothed fixed grid finite element method (SFGFEM) is used to simplify the solution of variable domain problem of unconfined seepage. The gradient smoothing technique, in which the area integrals are transformed into the line integrals around edges of smoothing cells, is used to obtain the element matrices. The solution process starts with an initial guess for the unknown boundary and SFGFEM is used to approximate the field variable. The boundary shape is then modified to eventually satisfy nonlinear boundary condition in an iterative process. Some numerical examples are solved to evaluate the applicability of the proposed method and the results are compared with those available in the literature. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
943.
Kee‐Won Seong 《水文研究》2014,28(6):2881-2896
A general form of formula is presented for the rainfall Intensity–Duration–Frequency (IDF) relationship. This formula is derived from the nearly normal probability distribution function of transformed intensities. In order to transform the raw intensities, a correcting non‐constant spread technique, the Kruskal–Wallis statistic, and the Box–Cox transformation are adopted. These transformations enable to express a simpler model for the IDF formula that agrees well with traditional IDF relationships. Since the proposed method allows the estimation of any percentile value of intensities with a single equation, the intensity percentile at arbitrary duration can be generated easily. The validity of the formula derived by means of the proposed method is assessed using data from major weather stations in Korea. The results show that the percentile intensities produced using the proposed method are in good agreement with those of traditional frequency analysis. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
944.
The non‐aqueous phase liquid simulator was used to model and interpret the occurrence of a thin benzene‐contaminated soil layer 9.0 m below the groundwater table in an abandoned gas plant site. The simulator was first evaluated in column tests under similar conditions to the contaminated site. Saturation–capillary pressure (S–P) relationships were extended from the laboratory scale of the column tests to the field scale of the subsurface at the abandoned site. Dynamic boundary conditions were established in order to prevent the model from generating excessive vertical velocities. The modelled benzene layer formation process agreed well with the in situ observations. With falling and then rising of the water table, benzene release from the surface migrated downward and then upward and distributed itself below and above the water table. Biochemical degradation of benzene made the distribution discontinuous in the subsurface. These two factors resulted in the thin benzene‐contaminated layer below the groundwater table. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
945.
This paper deals with the moisture exchanges occurring between soils and the surrounding atmosphere. Convective drying tests are performed on Awans silts at different drying temperatures and air relative humidities in order to reproduce the natural drying conditions. The experiments improve the understanding of the vapour transfers kinetics between the soil samples and the atmosphere. The experimental results are analysed assuming that the transfers take place in a boundary layer existing at the surface of the porous medium. The influence of the thermal conditions on the evaporation is also taken into account. In our model, coupled vapour and energy exchanges are controlled by mass and heat transfer coefficients characterizing the boundary layer. These coefficients are determined from the drying experiments. The modelling of the drying tests in non‐isothermal conditions is performed in order to validate the formulation of the vapour and heat exchanges. The numerical results present a good agreement with the kinetic of the materials desaturation determined during the tests. The analysis of the moisture transport mechanisms into the sample and at the boundary shows that at the beginning of the test, the drying is first achieved by the transport of moisture in its liquid form and its evaporation at the sample outer boundary in contact with the atmosphere. In a second step, vapour diffusion becomes predominant into the sample and it corresponds to the most important decrease of relative humidity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
946.
Consolidation of clayey contaminant barriers such as landfill liners has been postulated as a cause of early breakthrough of contaminants. In this paper we theoretically investigate this proposition. For this purpose a sophisticated one‐dimensional, large‐deformation model of coupled mechanical consolidation and solute transport is employed. This new model is a generalization of existing coupled consolidation and solute transport models described in the literature. It takes into account both non‐linearities in geometry as well as constitutive relations. The latter relate the compressibility, hydraulic conductivity and coefficient of effective diffusivity to the deformation of the soil. The model is applied to a case study of a clay liner and geomembrane system. Results obtained from numerical solution of the model equations are compared with those from various simplified models, including a ‘diffusion only’ (i.e. a rigid soil) model traditionally used in contaminant barrier design. For barriers incorporating low compressibility soils (as for many well compacted clays), there is little difference between contaminant transit (i.e. breakthrough) times predicted by the two models. However, for contaminant barriers incorporating more compressible soils, consolidation is shown to significantly accelerate transport. These results indicate the potential importance of accounting for the effects of soil consolidation and highlight the limitations of existing models when modelling solute transport through composite barriers utilizing soft soils. Based on these limited results, we suggest a possible way of taking into account soil consolidation using simplified models. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
947.
In this study, a three‐dimensional (3D) non‐hydrostatic circulation model was applied to study the thermal structure, its evolution and water circulation of Yachiyo Lake in Hiroshima, Japan. The simulations were conducted for 1 month during July 2006. The meteorological forcing variables such as wind stress, surface atmospheric pressure and heat flux transfer through the lake surface were provided by an atmospheric mesoscale model run. The vertical mixing process of the lake was calculated using the Mellor‐Yamada turbulence model. The 1‐month numerical simulation revealed the wind‐induced currents of the lake, two gyres in the mid‐layer, and depth‐averaged monthly mean currents. Further numerical experiments studying the mechanism of the two gyres in the lake showed the important role of topography in gyre formation. The thermal structure of the lake and its evolution both in space and in time as predicted by the model showed very good agreement with the observed values and characteristics of Yachiyo Lake. The internal gravity waves, which are crucial for mixing in the stratified lake, are depicted by the vertical fluctuation of isotherms. Using the non‐dimensional gradient Richardson number, Yachiyo Lake was determined to be stable under strong stratification during the study period, and therefore very sensitive to wind stress. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
948.
A numerical model describing the flow of multiphase, immiscible fluids in a deformable, double‐porosity featured soil has been developed. The model is focused on the modelling of the secondary porosity features in soil, which is more relevant to groundwater contamination problems. The non‐linear saturation and relative permeabilities were expressed as functions of the capillary pressures. The governing partial differential equations in terms of soil displacement and fluid pressures were solved numerically. Galerkin's weighted‐residual finite element method was employed to obtain the spatial discretization whereas temporal discretization was achieved using a fully implicit scheme. The model was verified against established, peer‐reviewed works, and the assumption that the immiscible fluids (non‐aqueous phase liquids) will flow preferentially through the secondary porosity features in soil was validated. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
949.
In this paper, the non‐coaxial relation between the principal plastic strain increments and the principal stresses, which results from the internal friction in geomaterials, is analyzed, and the phenomenon of the unbalanced development of plastic flow in two conjugate directions is discussed. A non‐coaxial, unbalanced plastic flow model for Coulomb frictional materials is developed and used to determine the orientation of shear band in geomaterials. It is shown that the unbalanced index r of plastic flow has important effect on the orientation of the shear band, and the orientation determined by the conventional plastic flow theory is only a special case of the proposed model when r=0. This result soundly explains the reason that the geomaterials with the same internal friction angle and dilatancy angle can have very different shear band orientations. In addition, the difference between the intrinsic and apparent dilatancy angles is analyzed, and it is emphasized that the dilatancy angle commonly used in practice is indeed the apparent dilatancy angle. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
950.
Better parameterization of a hydrological model can lead to improved streamflow prediction. This is particularly important for seasonal streamflow forecasting with the use of hydrological modelling. Considering the possible effects of hydrologic non‐stationarity, this paper examined ten parameterization schemes at 12 catchments located in three different climatic zones in east Australia. These schemes are grouped into four categories according to the period when the data are used for model calibration, i.e. calibration using data: (1) from a fixed period in the historical records; (2) from different lengths of historical records prior to prediction year; (3) from different climatic analogue years in the past; and (4) data from the individual months. Parameterization schemes were evaluated according to model efficiency in both the calibration and verification period. The results show that the calibration skill changes with the different historic periods when data are used at all catchments. Comparison of model performance between the calibration schemes indicates that it is worth calibrating the model with the use of data from each individual month for the purpose of seasonal streamflow forecasting. For the catchments in the winter‐dominant rainfall region of south‐east Australia, a more significant shift in rainfall‐runoff relationships at different periods was found. For those catchments, model calibration with the use of 20 years of data prior to the prediction year leads to a more consistent performance. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号