首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83篇
  免费   1篇
地球物理   2篇
地质学   1篇
天文学   81篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2014年   1篇
  2011年   4篇
  2010年   3篇
  2009年   5篇
  2008年   3篇
  2007年   3篇
  2006年   3篇
  2005年   9篇
  2004年   4篇
  2003年   14篇
  2002年   9篇
  2001年   3篇
  2000年   2篇
  1999年   3篇
  1998年   8篇
  1997年   1篇
  1996年   2篇
  1988年   1篇
  1985年   1篇
  1984年   1篇
  1981年   1篇
排序方式: 共有84条查询结果,搜索用时 31 毫秒
71.
72.
Precision measurements of neutron star radii can provide a powerful probe of the properties of cold matter beyond nuclear density. Beginning in the late 1970s, it was proposed that the radius could be obtained from the apparent or inferred emitting area during the decay portions of thermonuclear (type I) X-ray bursts. However, this apparent area is generally not constant, preventing a reliable measurement of the source radius. Here, we report for the first time a correlation between the variation of the inferred area and the burst properties, measured in a sample of almost 900 bursts from 43 sources. We found that the rate of change of the inferred area during decay is anticorrelated with the burst decay duration. A Spearman rank correlation test shows that this relation is significant at the  <10−45  level for our entire sample, and at the  7 × 10−37  level for the 625 bursts without photospheric radius expansion. This anticorrelation is also highly significant for individual sources exhibiting a wide range of burst durations, such as 4U 1636–536 and Aql X-1. We suggest that variations in the colour factor, which relates the colour temperature resulted from the scattering in the neutron star atmosphere to the effective temperature of the burning layer, may explain the correlation. This in turn implies significant variations in the composition of the atmosphere between bursts with long and short durations.  相似文献   
73.
74.
We propose a new chemical evolution model aimed at explaining the chemical properties of globular clusters (GCs) stars. Our model depends upon the existence of (i) a peculiar pre-enrichment phase in the GC's parent galaxy associated with very low-metallicity Type II supernovae (SNe II) and (ii) localized inhomogeneous enrichment from a single Type Ia supernova (SN Ia) and intermediate-mass  (4–7 M)  asymptotic giant branch field stars. GC formation is then assumed to take place within this chemically peculiar region. Thus, in our model the first low-mass GC stars to form are those with peculiar abundances (i.e. O-depleted and Na-enhanced), while 'normal' stars (i.e. O-rich and Na-depleted) are formed in a second stage when self-pollution from SNe II occurs and the peculiar pollution from the previous phase is dispersed. In this study, we focus on three different GCs: NGC 6752, 6205 (M 13) and 2808. We demonstrate that, within this framework, a model can be constructed which is consistent with (i) the elemental abundance anticorrelations, (ii) isotopic abundance patterns and (iii) the extreme [O/Fe] values observed in NGC 2808 and M 13, without violating the global constraints of approximately unimodal [Fe/H] and C+N+O.  相似文献   
75.
76.
Neutron-induced nucleosynthesis plays an important role in astrophysical scenarios like in primordial nucleosynthesis in the early universe, in the s-process occurring in Red Giants, and in the -rich freeze-out and r-process taking place in supernovae of type II. A review of the three important aspects of neutron-induced nucleosynthesis is given: astrophysical background, experimental methods and theoretical models for determining reaction cross sections and reaction rates at thermonuclear energies. Three specific examples of neutron capture at thermal and thermonuclear energies are discussed in some detail.  相似文献   
77.
A P Cygni profile with absorption at 1.05 μm was observed in three pre-maximum J -band spectra of the Type Ia supernova (SN) 1994D. The feature was not present in two post-maximum spectra. The line was attributed to He I 10830 ... or Mg II 10926 ..., based on a local thermodynamic equilibrium (LTE) treatment. The detection of He in the ejecta of a SN Ia would be useful for determining the pre-SN evolution and the explosion mechanism of SNe Ia.
In this paper, synthetic spectra are presented for both the He and Mg models. The population of the He levels has been computed in non-local thermodynamic equilibrium (NLTE), including non-thermal excitation and ionization effects resulting from the deposition of γ-rays from the decay of 56Ni and 56Co.
The J -band feature in the pre-maximum spectra can be reproduced either assuming the presence of a narrow shell, between 10000 and 12500 km s−1, containing about 0.01 M⊙ of He, or increasing the abundance of Mg by about a factor of 5 with respect to the W7 value, implying a Mg mass of about 0.08 M⊙ above 10000 km s−1. Both models are in good agreement with the optical spectrum. In particular, a strong He I 10830-... line does not imply a strong 5876-... line, because the departure coefficients of the 2p and 2s levels of He I differ by about an order of magnitude.
Unfortunately, neither model is able to reproduce the sudden disappearance of the J -band feature in the post-maximum spectra. Possible explanations are discussed.  相似文献   
78.
We discuss theoretical predictions concerning the evolution of globular cluster Population II stars with respect to current estimates of standard errors in the determination of nuclear burning rates. Numerical evaluations are given for the dependence of the turn-off and horizontal branch luminosities on the rate of the relevant nuclear reactions. We conclude that evolutionary predictions appear rather solid in this respect, with a maximum 3 σ error of about 1 Gyr in the evaluation of cluster ages derived from the calibration of the difference in luminosity between the horizontal branch and the turn-off. However, current evaluation of the original He content, as given on the basis of the R -parameter, will need to wait for a much better determination of the 12C(α, γ)16O reaction before reaching a satisfactory accuracy.  相似文献   
79.
We discuss the influence of nuclear masses and mass distributions of fission products on the formation of heavy elements at the final stages of the r-process recycled through fission on long duration timescales. The fission recycling is of great importance in an environment with a high density of free neutrons (e.g., in neutron star merger scenarios), when the r-process duration is long enough for most of the seed nuclei to be transformed into actinoids. The fission products of transuranium elements are again drawn into the r-process to produce the abundance curve beyond the iron peak. In this case, to explain the abundances of the A ~ 130 peak elements, not only the nuclear masses, fission barriers, and reaction rates, but also the fission product mass distribution must be predicted. Our r-process calculations using new nuclear masses and fission barriers and reaction rates based on them have shown that the simple two-fission-fragment model used previously in r-process calculations cannot describe adequately the position of the second peak in the observed abundance curve. We show that agreement between calculations and observations can be achieved only when we properly consider the mass distribution of fission products by taking into account the emission of instantaneous fission neutrons.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号