首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   375篇
  免费   7篇
  国内免费   3篇
地球物理   9篇
地质学   61篇
海洋学   1篇
天文学   1篇
自然地理   313篇
  2023年   1篇
  2020年   1篇
  2019年   1篇
  2016年   1篇
  2013年   8篇
  2012年   5篇
  2011年   1篇
  2009年   2篇
  2007年   14篇
  2006年   17篇
  2005年   20篇
  2004年   15篇
  2003年   18篇
  2002年   11篇
  2001年   15篇
  2000年   20篇
  1999年   15篇
  1998年   24篇
  1997年   25篇
  1996年   18篇
  1995年   25篇
  1994年   13篇
  1993年   14篇
  1992年   16篇
  1991年   21篇
  1990年   22篇
  1989年   15篇
  1988年   3篇
  1987年   8篇
  1986年   13篇
  1985年   3篇
排序方式: 共有385条查询结果,搜索用时 78 毫秒
51.
52.
53.
The deep drill hole SG6 in western Siberia (66°N, 78.5°E) penetrated 1.1  km of lower Triassic basalts, which are possibly an extension of the central Siberian Permo– Triassic flood basalt province. About 300 samples of these basalts were progressively demagnetized and measured. Principal component analysis often shows multiple magnetizations carried by haematite and magnetite. The corrected mean inclinations are +77° and −77° for the haematite component. A magnetostratigraphic scale was derived and showed a N–R–N–R–N succession. This is quite different from the Noril'sk and Taimyr typical polarity scale, R–N.
  The basalts found in the SG6 deep drill hole are slightly younger than those of central Siberia and Taimyr. They correspond to middle–upper Induan age, whereas the Noril'sk and Taimyr sections correspond to an uppermost Permian and lower Induan age. Altogether they indicate that, after a high output rate of volcanic material near the Permo–Triassic boundary, this activity slowed down drastically on the Siberian platform and Taimyr, but persisted for several million years in western Siberia.  相似文献   
54.
55.
A continental sequence of red beds and interbedded basaltic layers crops out in the Sierra Chica of Córdoba Province, Argentina (31.5°S, 64.4°W). This succession was deposited in a half-graben basin during the Early Cretaceous. We have carried out a palaeomagnetic survey on outcrops of this basin (147 sites in seven localities). From an analysis of IRM acquisition curves and detailed demagnetization behaviour, three different magnetic components are identified in the volcanic rocks: components A, B and X are carried by single- or pseudo-single-domain (titano) magnetite, haematite and multidomain magnetite, respectively. Component A is interpreted as a primary component of magnetization because it passes conglomerate, contact, tilt and reversal tests. The carrier of the primary magnetization, fine-grained (titano)magnetite, is present in basalts with a high degree of deuteric oxidation. This kind of oxidation is interpreted to have occurred during cooling. Components B and X are discarded because they are interpreted as recent magnetizations. In the sedimentary rocks, haematite and magnetite are identified as the carriers of remanence. Both minerals carry the same component, which passes a reversal test. The calculated palaeomagnetic pole, based on 55 sites, is Lat. 86.0°S, Long. 75.9°E ( A 95=3.3, K =35). This palaeomagnetic pole supersedes four with anomalous positions reported in previous papers.  相似文献   
56.
Palaeomagnetic investigations and Rb–Sr dating were carried out on samples from two plutons from the Granite Harbour Intrusives of the Transantarctic Mountains inland of Terra Nova Bay. The Rb–Sr whole rock–biotite ages from Teall Nunatak (475±4, 483±4 Ma), a quartz-diorite pluton cropping out to the south of Priestley Glacier, are older than that from the Mount Keinath monzogranite (450±4 Ma), which is located to the north of the glacier. These results are consistent with the literature data, which suggest that during the last phases of the Ross Orogeny the cooling rate of the basement was significantly lower to the north than to the south of Priestley Glacier. The Teall Nunatak quartz-diorite is characterized by a stable magnetization, whose blocking-temperature spectrum ranges from 530 to 570 °C. At one site, the stable magnetization is screened by a large secondary component of opposite polarity, removed by thermal demagnetization below 300 °C. The characteristic directions after thermal demagnetization yielded a southern pole located at lat. 11°S, long. 21°E. The magnetization of Mount Keinath monzogranite consists of several components with overlapping stability spectra. A characteristic direction was isolated at one site only, obtained by demagnetizing the specimens in the temperature range from 380 to 460 °C.
  Comparison with the other East Antarctica poles shows that those from Victoria Land are very well grouped and give a reliable early Ordovician palaeopole (lat. 5°S, long. 23°E, with K =196 and A 95=3.7°), whereas the poles from Wilkes, Enderby and Dronning Maud Land are dispersed. We tentatively advance the hypothesis that the dispersion reflects different magnetization ages due to the slow cooling of these regions during the last stages of the Ross Orogeny.  相似文献   
57.
58.
59.
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号