首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5642篇
  免费   39篇
  国内免费   1篇
测绘学   4篇
地球物理   4篇
地质学   3篇
海洋学   2篇
天文学   5669篇
  2024年   5篇
  2023年   10篇
  2022年   15篇
  2021年   13篇
  2020年   10篇
  2019年   33篇
  2018年   9篇
  2017年   1篇
  2016年   13篇
  2015年   33篇
  2014年   39篇
  2013年   38篇
  2012年   64篇
  2011年   57篇
  2010年   92篇
  2009年   413篇
  2008年   355篇
  2007年   493篇
  2006年   485篇
  2005年   562篇
  2004年   460篇
  2003年   469篇
  2002年   433篇
  2001年   332篇
  2000年   293篇
  1999年   277篇
  1998年   360篇
  1997年   31篇
  1996年   23篇
  1995年   83篇
  1994年   42篇
  1993年   12篇
  1992年   10篇
  1991年   12篇
  1990年   17篇
  1989年   17篇
  1988年   16篇
  1987年   16篇
  1986年   5篇
  1985年   6篇
  1984年   4篇
  1983年   5篇
  1982年   10篇
  1981年   8篇
  1980年   1篇
排序方式: 共有5682条查询结果,搜索用时 46 毫秒
91.
92.
We present numerical investigations into the formation of massive stars from turbulent cores of density structure  ρ∝ r −1.5  . The results of five hydrodynamical simulations are described, following the collapse of the core, fragmentation and the formation of small clusters of protostars. We generate two different initial turbulent velocity fields corresponding to power-law spectra   P ∝ k −4  and   P ∝ k −3.5  , and we apply two different initial core radii. Calculations are included for both completely isothermal collapse, and a non-isothermal equation of state above a critical density  (10−14 g cm−3)  . Our calculations reveal the preference of fragmentation over monolithic star formation in turbulent cores. Fragmentation was prevalent in all the isothermal cases. Although disc fragmentation was largely suppressed in the non-isothermal runs due to the small dynamic range between the initial density and the critical density, our results show that some fragmentation still persisted. This is inconsistent with previous suggestions that turbulent cores result in the formation of a single massive star. We conclude that turbulence cannot be measured as an isotropic pressure term.  相似文献   
93.
94.
We present a study of radiative transfer in dusty, clumpy star-forming regions. A series of self-consistent, 3D, continuum radiative transfer models are constructed for a grid of models parametrized by central luminosity, filling factor, clump radius and face-averaged optical depth. The temperature distribution within the clouds is studied as a function of this parametrization. Among our results, we find that: (i) the effective optical depth in clumpy regions is less than in equivalent homogeneous regions of the same average optical depth, leading to a deeper penetration of heating radiation in clumpy clouds, and temperatures higher by over 60 per cent; (ii) penetration of radiation is driven by the fraction of open sky (FOS) – which is a measure of the fraction of solid angle along which no clumps exist; (iii) FOS increases as clump radius increases and as filling factor decreases; (iv) for values of   FOS >0.6–0.8  the sky is sufficiently 'open' that the temperature distribution is relatively insensitive to FOS; (v) the physical process by which radiation penetrates is preferentially through streaming of radiation between clumps as opposed to diffusion through clumps; (vi) filling factor always dominates the determination of the temperature distribution for large optical depths, and for small clump radii at smaller optical depths; (vii) at lower face-averaged optical depths, the temperature distribution is most sensitive to filling factors of 1–10 per cent, in accordance with many observations; (viii) direct shadowing by clumps can be important for distances approximately one clump radius behind a clump.  相似文献   
95.
Some difficulties in explaining the slow rotation of CP stars are discussed. The most likely hypotheses are (1) a loss of angular momentum involving a magnetic field during “pre-main sequence” evolution and (2) the slow rotation existed from the very start of the creation of these stars. The braking hypothesis is supported by only one property of CP stars— the lower the mass of the star is, the greater the difference between its average rotation velocity vsini and that of normal stars. On the other hand, there is another property— the lower the rotation speeds of CP stars are, the greater their fraction among normal stars. The latter property supports the hypothesis that the lower the initial rotation speed of a star is when it is created, the greater the probability will become chemically peculiar. This property is inherent in chemically peculiar stars both with and without a magnetic field. It is proposed that the cause of the slow rotation of CP stars must be sought in the very earliest phases of their formation, as should the cause of the separation into chemically peculiar magnetic, chemically peculiar nonmagnetic, and normal stars.__________Translated from Astrofizika, Vol. 48, No. 2, pp. 229–245 (May 2005).  相似文献   
96.
We compare theoretical stellar models for main sequence (MS) stars with the Hipparcos data base for the Hyades cluster to give a warning against the uncritical use of available theoretical scenarios and to show how formal MS fittings can be fortuitous if not fictitious. Moreover, we find that none of the current theoretical scenarios appears able to account for an observed mismatch between theoretical predictions and observations of the coolest Hyades MS stars. Finally, we show that current theoretical models probably give too faint He burning luminosities unlike the case of less massive He burning models, with degenerate progenitors, which have been suggested to suffer the opposite discrepancy.  相似文献   
97.
98.
99.
Two high resolution spectra of the hot RCrB star DY Cen in the red region are compared. The photospheric absorption lines show a radial velocity variation of 12 kms-1 between 1989 July and 1992 May. Emission components to some CII lines present in 1989 are almost entirely absent in 1992. Nebular forbidden lines of [OI], [NII] and [SII] appear unchanged from 1989 to 1992  相似文献   
100.
Photoelectric radial-velocity measurements show that HD 118670 is a double-lined spectroscopic binary in an orbit which is not quite circular and whose period is about 48 days. Spectral types of K0 V and K7 V would satisfy the photometry and the mass ratio; the mass function would then suggest the possibility of eclipses. However, actual spectral classification indicates a luminosity somewhat above the main sequence  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号