首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1346篇
  免费   96篇
  国内免费   362篇
测绘学   33篇
大气科学   6篇
地球物理   160篇
地质学   752篇
海洋学   47篇
天文学   731篇
综合类   27篇
自然地理   48篇
  2024年   5篇
  2023年   13篇
  2022年   21篇
  2021年   12篇
  2020年   19篇
  2019年   41篇
  2018年   30篇
  2017年   16篇
  2016年   38篇
  2015年   43篇
  2014年   67篇
  2013年   69篇
  2012年   63篇
  2011年   88篇
  2010年   55篇
  2009年   109篇
  2008年   106篇
  2007年   130篇
  2006年   124篇
  2005年   102篇
  2004年   82篇
  2003年   86篇
  2002年   72篇
  2001年   50篇
  2000年   45篇
  1999年   35篇
  1998年   71篇
  1997年   23篇
  1996年   20篇
  1995年   16篇
  1994年   22篇
  1993年   19篇
  1992年   15篇
  1991年   8篇
  1990年   18篇
  1989年   9篇
  1988年   13篇
  1987年   10篇
  1986年   8篇
  1985年   5篇
  1984年   5篇
  1983年   4篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1978年   6篇
  1977年   2篇
  1976年   1篇
  1973年   1篇
排序方式: 共有1804条查询结果,搜索用时 15 毫秒
41.
INTRODUCTIONSincethediscoveryofeclogiteswithcoesiteanddia mondinclusionsrelatedtothecontinent continentcollision orogenyenvironment,theultrahigh pressuremetamorphism(UHPM )intheDabie Suluhasarousedgreatinterestinmanygeologists (Liouetal .,1994 ;Xuetal.,1992 ) .Experimentalstudieshaveprovedthatsuchmineralsasdia mond ,coesiteandomphaciteoccurredat 2 - 5GPa (andatthecorrespondingtemperatures) (Stevenetal.,1982 ;MirwaldandMasonne ,1980 ) .However,itdoesnotmeanthatthemetamorphicrockscanbe…  相似文献   
42.
据岩体在卸荷情况下的拉剪应力状态,确定了节理岩体的线弹性断裂力学模型。依照此模型,可以得到相对远离裂隙(该位置的点到裂隙中心的距离比裂缝长度大)且受裂隙影响区域内应力、应变和变形方程。这些对评估裂隙岩石变形有重要的参考意义。通过用理论方程的计算结果和卸荷情况下试验观测所得的数据对比,证明该模型应用于实际工程中具有可行性。  相似文献   
43.
We propose a discrete element model for brittle rupture. The material consists of a bidimensional set of closed‐packed particles in contact. We explore the isotropic elastic behavior of this regular structure to derive a rupture criterion compatible to continuum mechanics. We introduce a classical criterion of mixed mode crack propagation based on the value of the stress intensity factors, obtained by the analysis of two adjacent contacts near a crack tip. Hence, the toughness becomes a direct parameter of the model, without any calibration procedure. We verify the consistency of the formulation as well as its convergence by comparison with theoretical solutions of tensile cracks, a pre‐cracked beam, and an inclined crack under biaxial stress. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
44.
We propose a numerical method that couples a cohesive zone model (CZM) and a finite element‐based continuum damage mechanics (CDM) model. The CZM represents a mode II macro‐fracture, and CDM finite elements (FE) represent the damage zone of the CZM. The coupled CZM/CDM model can capture the flow of energy that takes place between the bulk material that forms the matrix and the macroscopic fracture surfaces. The CDM model, which does not account for micro‐crack interaction, is calibrated against triaxial compression tests performed on Bakken shale, so as to reproduce the stress/strain curve before the failure peak. Based on a comparison with Kachanov's micro‐mechanical model, we confirm that the critical micro‐crack density value equal to 0.3 reflects the point at which crack interaction cannot be neglected. The CZM is assigned a pure mode II cohesive law that accounts for the dependence of the shear strength and energy release rate on confining pressure. The cohesive shear strength of the CZM is calibrated by calculating the shear stress necessary to reach a CDM damage of 0.3 during a direct shear test. We find that the shear cohesive strength of the CZM depends linearly on the confining pressure. Triaxial compression tests are simulated, in which the shale sample is modeled as an FE CDM continuum that contains a predefined thin cohesive zone representing the idealized shear fracture plane. The shear energy release rate of the CZM is fitted in order to match to the post‐peak stress/strain curves obtained during experimental tests performed on Bakken shale. We find that the energy release rate depends linearly on the shear cohesive strength. We then use the calibrated shale rheology to simulate the propagation of a meter‐scale mode II fracture. Under low confining pressure, the macroscopic crack (CZM) and its damaged zone (CDM) propagate simultaneously (i.e., during the same loading increments). Under high confining pressure, the fracture propagates in slip‐friction, that is, the debonding of the cohesive zone alternates with the propagation of continuum damage. The computational method is applicable to a range of geological injection problems including hydraulic fracturing and fluid storage and should be further enhanced by the addition of mode I and mixed mode (I+II+III) propagation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
45.
This paper studies the chemo‐mechanics of cemented granular solids in the context of continuum thermodynamics for fluid‐saturated porous media. For this purpose, an existing constitutive model formulated in the frame of the Breakage Mechanics theory is augmented to cope with reactive processes. Chemical state variables accounting for the reactions between the solid constituents and the solutes in the pore fluid are introduced to enrich the interactions among the microstructural units simulated by the model (i.e., grains and cement bonds). Two different reactive processes are studied (i.e., grain dissolution and cement precipitation), using the chemical variables to describe the progression of the reactions and track changes in the size of grains and bonds. Finally, a homogenization strategy is used to derive the energy potentials of the solid mixture, adopting probability density functions that depend on both mechanical and chemical indices. It is shown that the connection between the statistics of the micro‐scale attributes and the continuum properties of the solid enables the mathematical capture of numerous mechanical effects of lithification and chemical deterioration, such as changes in stiffness, expansion/contraction of the elastic domain, and development of inelastic strains during reaction. In particular, the model offers an interpretation of the plastic strains generated by aggressive environments, which are here interpreted as an outcome of chemically driven debonding and comminution. As a result, the model explains widely observed macroscopic signatures of geomaterial degradation by reconciling the energetics of the deformation/reaction processes with the evolving geometry of the microstructural attributes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
46.
This paper endows the recently‐proposed granular element method (GEM) with the ability to perform 3D discrete element calculations. By using non‐uniform rational B‐Splines to accurately represent complex grain geometries, we proposed an alternative approach to clustering‐based and polyhedra‐based discrete element methods whereby the need for complicated and ad hoc approaches to construct 3D grain geometries is entirely bypassed. We demonstrate the ability of GEM in capturing arbitrary‐shaped 3D grains with great ease, flexibility, and without excessive geometric information. Furthermore, the applicability of GEM is enhanced by its tight integration with existing non‐uniform rational B‐Splines modeling tools and ability to provide a seamless transition from binary images of real grain shapes (e.g., from 3D X‐ray CT) to modeling and discrete mechanics computations.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
47.
For civil engineering structures with a tightness role, structural permeability is a key issue. In this context, this paper presents a new proposition of a numerical modelling of leakage rate through a cracked concrete structure undergoing mode I cracking. The mechanical state of the material, considered in the framework of continuum mechanics based on finite element modelling, is described by means of the stress‐based nonlocal damage model which takes into account the stress state and provides realistic local mechanical fields. A semi‐discrete method based on the strong discontinuity approach to estimate crack opening is then considered in the post‐treatment phase. Using a Poiseuille's like relation, the coupling between the mechanical state of the material and its dry gas conductivity is performed. For validation purposes, an original experimental campaign is conducted on a dry concrete disc loaded in a splitting setup. During the loading, gas conductivity and digital image correlation analysis are performed. The comparison with the 3D experimental mechanical global response highlights the performance of the mechanical model. The comparison between crack openings measured by digital image correlation and estimated by the strong discontinuity method shows a good agreement. Finally, the results of the semi‐discrete approach coupled with the gas conductivity compared with experimental data show a good estimation of the structural conductivity. Consequently, if the mechanical problem is well modelled at the global scale, then the proposed approach provides good estimation of gas conductivity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
48.
The present paper focuses on selected plasticity and damage‐plasticity models for describing the 3D material behavior of concrete. In particular, a plasticity model and a damage‐plasticity model are reviewed and evaluated. Based on the results of the evaluation, enhancements are proposed, aiming at improving the correspondence between predicted and observed material behavior and aiming at implementing a robust and efficient stress update algorithm in a finite element program for performing large‐scale 3D numerical simulations of concrete structures. The capabilities of the concrete models are demonstrated by 3D numerical simulations of benchmark tests with combined bending and torsional loading and combined compression and shear loading and by a large‐scale 3D finite element analysis of a model test of a concrete arch dam. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
49.
Sealing layers are often represented by sedimentary sequences characterized by alternating strong and weak lithologies. When involved in faulting processes, these mechanically heterogeneous multilayers develop complex fault geometries. Here we investigate fault initiation and evolution within a mechanical multilayer by integrating field observations and rock deformation experiments. Faults initiate with a staircase trajectory that partially reflects the mechanical properties of the involved lithologies, as suggested by our deformation experiments. However, some faults initiating at low angles in calcite-rich layers (θi = 5°–20°) and at high angles in clay-rich layers (θi = 45°–86°) indicate the important role of structural inheritance at the onset of faulting. With increasing displacement, faults develop well-organized fault cores characterized by a marly, foliated matrix embedding fragments of limestone. The angles of fault reactivation, which concentrate between 30° and 60°, are consistent with the low friction coefficient measured during our experiments on marls (μs = 0.39), indicating that clay minerals exert a main control on fault mechanics. Moreover, our integrated analysis suggests that fracturing and faulting are the main mechanisms allowing fluid circulation within the low-permeability multilayer, and that its sealing integrity can be compromised only by the activity of larger faults cutting across its entire thickness.  相似文献   
50.
We present a new method to derive line-of-sight acceleration observables from spacecraft radio tracking data. The observables can be used to estimate the mass and gravity of a natural satellite as a spacecraft flyby. The corresponding observation model adapts to one-way and two/three-way tracking modes. As a test case for method validation and application, we estimated the mass and degree two gravity field for the Martian moon Phobos using simulated tracking data when the spacecraft Mars Express flew by Phobos on 2013 December 29. We have a few real tracking data during flyby and they will be used to confirm raw data simulation. The main purpose of this paper is to demonstrate the method of line-of-sight acceleration reduction from raw tracking data and the feasibility to estimate mass and gravity of a natural satellite using this type of observable. This novel method is potentially applicable to planet and asteroid gravity field studies combined with Doppler tracking data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号