首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27820篇
  免费   1884篇
  国内免费   1524篇
测绘学   783篇
大气科学   708篇
地球物理   3086篇
地质学   5517篇
海洋学   1258篇
天文学   17800篇
综合类   610篇
自然地理   1466篇
  2024年   74篇
  2023年   156篇
  2022年   337篇
  2021年   298篇
  2020年   307篇
  2019年   417篇
  2018年   292篇
  2017年   292篇
  2016年   346篇
  2015年   461篇
  2014年   623篇
  2013年   623篇
  2012年   696篇
  2011年   604篇
  2010年   681篇
  2009年   2137篇
  2008年   2037篇
  2007年   2332篇
  2006年   2265篇
  2005年   2116篇
  2004年   2135篇
  2003年   1847篇
  2002年   1623篇
  2001年   1424篇
  2000年   1257篇
  1999年   1235篇
  1998年   1320篇
  1997年   467篇
  1996年   355篇
  1995年   459篇
  1994年   459篇
  1993年   271篇
  1992年   214篇
  1991年   167篇
  1990年   150篇
  1989年   198篇
  1988年   134篇
  1987年   118篇
  1986年   104篇
  1985年   55篇
  1984年   32篇
  1983年   26篇
  1982年   12篇
  1981年   4篇
  1980年   9篇
  1979年   10篇
  1978年   6篇
  1977年   8篇
  1954年   5篇
  1897年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
It is usually recognized that relatively large amounts of soil particles cannot be transported by raindrop splashes under windless rain. However, the splash-saltation process can cause net transportation in the prevailing wind direction since variations in splash-saltation trajectory due to the wind are expected in wind-driven rain. Therefore, determining the combined effect of rain and wind on the process should enable improvement of the estimation of erosion for any given prediction technique. This paper presents experimental data on the effects of slope aspect, slope gradient, and horizontal wind velocity on the splash-saltation trajectories of soil particles under wind-driven rain. In a wind tunnel facility equipped with a rainfall simulator, the rains driven by horizontal wind velocities of 6, 10, and 14 m s−1 were allowed to impact three agricultural soils packed into 20×55 cm soil pans placed at both windward and leeward slopes of 7%, 15%, and 20%. Splash-saltation trajectories were measured by trapping the splashed particles at distances downwind on a 7-m uniform slope segment in the upslope and downslope directions, respectively, for windward and leeward slopes. Exponential decay curves were fitted for the mass distribution of splash-saltation sediment as a function of travel distance, and the average splash-saltation trajectory was derived from the average value of the fitted functions. The results demonstrated that the average trajectory of a raindrop-induced and wind-driven soil particle was substantially affected by the wind shear velocity, and it had the greatest correlation (r=0.96 for all data) with the shear velocity; however, neither slope aspect nor slope gradient significantly predicted the splash-saltation trajectory. More significantly, a statistical analysis conducted with nonlinear regression model of C1(u*2/g) showed that average trajectory of splash saltation was approximately three times greater than that of typical saltating sand grain.  相似文献   
992.
A new parameterisation for the threshold shear velocity to initiate deflation of dry and wet particles is presented. It is based on the balance of moments acting on particles at the instant of particle motion. The model hence includes a term for the aerodynamic forces, including the drag force, the lift force and the aerodynamic-moment force, and a term for the interparticle forces. The effect of gravitation is incorporated in both terms. Rather than using an implicit function for the effect of the aerodynamic forces as reported earlier in literature, a constant aerodynamic coefficient was introduced. From consideration of the van der Waals force between two particles, it was further shown that the effect of the interparticle cohesion force between two dry particles on the deflation threshold should be inversely proportional to the particle diameter squared. The interparticle force was further extended to include wet bonding forces. The latter were considered as the sum of capillary forces and adhesive forces. A model that expresses the capillary force as a function of particle diameter squared and the inverse of capillary potential was deduced from consideration of the well-known model of Fisher and the Young–Laplace equation. The adhesive force was assumed to be equal to tensile strength, and a function which is proportional to particle diameter squared and the inverse of the potential due to adhesive forces was derived. By combining the capillary-force model and the adhesive force model, the interparticle force due to wet bonding was simplified and written as a function of particle diameter squared and the inverse of matric potential. The latter was loglinearly related to the gravimetric moisture content, a relationship that is valid in the low-moisture content range that is important in the light of deflation of sediment by wind. By introducing a correction to force the relationship to converge to zero moisture content at oven dryness, the matric potential–moisture content relationship contained only one unknown model parameter, viz. moisture content at −1.5 MPa. Working out the model led to a rather simple parameterisation containing only three coefficients. Two parameters were incorporated in the term that applies to dry sediment and were determined by using experimental data as reported by Iversen and White [Sedimentology 29 (1982) 111]. The third parameter for the wet-sediment part of the model was determined from wind-tunnel experiments on prewetted sand and sandy loam aggregates. The model was validated using data from wind-tunnel experiments on the same but dry sediment, and on data obtained from simulations with the model of Chepil [Soil Sci. Soc. Am. Proc. 20 (1956) 288]. The experiments showed that soil aggregates should be treated as individual particles with a density equal to their bulk density. Furthermore, it was shown that the surface had to dry to a moisture content of about 75% of the moisture content at −1.5 MPa before deflation became sustained. The threshold shear velocities simulated with our model were found to be in good agreement with own observations and with simulations using Chepil's model.  相似文献   
993.
2003年2月14日新疆石河子南发生了5.0和5.4级地震。地震发生在北天山石场东南高山区内,位于亚马特断裂与斜切天山的博罗科努断裂所夹持断块的南缘。地震仅对石河子南山矿区所属的红沟煤矿、小沟煤矿与沙湾县煤矿等50、60年代建造的部分危房造成了轻微的破坏,大部分地区的房屋基本完好。造成地震灾害减轻的主要原因为多条断裂的隔震作用与居民点位于山区较平缓地带、场地条件较好等因素。  相似文献   
994.
山西大同-阳高地震活动背景   总被引:2,自引:1,他引:2  
仇转  刘巍 《山西地震》2005,(2):1-7,10
通过对大同盆地历史地震活动及大同盆地历史地震活动与华北地震区、山西地震带强震活动的关系的研究,得出山西大同-阳高1989年6.1级地震活动是这一地区历史地震的延续,是华北北部中强地震活动的重要组成部分,具有广义前震的重要意义,其后对应发生的河北张北6.2级地震。标志着华北地震区的地震活动期已进入尾声。  相似文献   
995.
晋北区中小地震活动与晋冀蒙交界区6级地震的关系   总被引:1,自引:1,他引:1       下载免费PDF全文
分析了晋北区中小地震(3.0≤ML≤5.0)的活动特征。统计发现,在1989 年山西大同-阳高6.1、1996年内蒙包头6.4和1998年河北张北6.2 级中强地震前1~2 年内晋北地区的中小地震活动年频次有明显的增强-衰减-发震这一特征;震前主震近场区的地震条带活动对主震位置有预示意义,而较远场的地震活动仅反映主震前应力水平的增强。并有震前活动向未来强震区靠近的特征。  相似文献   
996.
Abstract The Solund‐Stavfjord ophiolite complex (SSOC) in western Norway represents a remnant of the Late Ordovician oceanic lithosphere, which developed in an intermediate‐ to fast‐spreading Caledonian back‐arc basin. The internal architecture and magmatic features of its crustal component suggest that the SSOC has a complex, multistage sea floor spreading history in a supra‐subduction zone environment. The youngest crustal section associated with the propagating rift tectonics consists of a relatively complete ophiolite pseudostratigraphy, including basaltic volcanic rocks, a transition zone between the sheeted dyke complex and the extrusive sequence, sheeted dykes, and high‐level isotropic gabbros. Large‐scale variations in major and trace element distributions indicate significant remobilization far beyond that which would result from magmatic processes, as a result of the hydrothermal alteration of crustal rocks. Whereas K2O is strongly enriched in volcanic rocks of the extrusive sequence, Cu and Zn show the largest enrichment in the dyke complex near the dyke–volcanic transition zone or within this transition zone. The δ18O values of the whole‐rock samples show a general depletion structurally downwards in the ophiolite, with the largest and smallest variations observed in volcanic rocks and the transition zone, respectively. δ18O values of epidote–quartz mineral pairs indicate 260–290°C for volcanic rocks, 420°C for the transition zone, 280–345°C for the sheeted dyke complex and 290–475°C for the gabbros. The 87Sr/86Sr isotope ratios show the widest range and highest values in the extrusive rocks (0.70316–0.70495), and generally the lowest values and the narrowest range in the sheeted dyke complex (0.70338–0.70377). The minimum water/rock ratios calculated show the largest variations in volcanic rocks and gabbros (approximately 0–14), and generally the lowest values and range in the sheeted dyke complex (approximately 1–3). The δD values of epidote (?1 to ?12‰), together with the δ18O calculated for Ordovician seawater, are similar to those of present‐day seawater. Volcanic rocks experienced both cold and warm water circulation, resulting in the observed K2O‐enrichment and the largest scatter in the δ18O values. As a result of metal leaching in the hot reaction zone above a magma chamber, Zn is strongly depleted in the gabbros but enriched in the sheeted dyke complex because of precipitation from upwelling of discharged hydrothermal fluids. The present study demonstrates that the near intact effect of ocean floor hydrothermal activity is preserved in the upper part of the SSOC crust, despite the influence of regional lower greenschist facies metamorphism.  相似文献   
997.
Abstract   Magnetic susceptibility and the anisotropy of magnetic susceptibility were measured on an 800-cm-thick succession of cumulate gabbro in the Sadm area of the Oman ophiolite. The section contained three distinct cumulate units. The susceptibility tends to decrease upward in each from a melanocratic layer (several tens of centimeters thick) to a leucocratic layer (a few meters thick). The susceptibility decreases in accordance with the decreasing number of magnetite grains, which are the alteration product mainly of olivine minerals. This suggests the cyclic downward accumulation of olivine in the cumulate gabbro. The apparent strain deduced from the patterns of magnetic and grain fabrics was the result mostly of simple shear, so that the layering of gabbro is understood to be formed primarily by a crystal cumulus process followed by simple shear deformation.  相似文献   
998.
We present a detailed study of a 1B/M6.9 impulsive flare combining high time resolution (1 ms) and instantaneous emission source localization observations at submillimeter frequencies (212 GHz), obtained with the solar submillimeter telescope (SST), and Hα data from the Hα solar telescope for argentina (HASTA). The flare, starting at 16:34 UT, occurred in active region (AR) 9715 (NOAA number) on November 28, 2001, and was followed by an Hα surge. We complement our data with magnetograms from the Michelson Doppler Imager (SOHO/MDI). SST observed a short impulsive burst at 212 GHz, presenting a weak bulk emission (of about 90 sfu) composed of a few shorter duration structures. The integrated Hα and the 212 GHz light curves present a remarkable agreement during the impulsive phase of the event. The delay between both curves stays below 12 s (the time resolution of the Hα telescope). The flare as well as the surge are linked to new flux emergence very close to the main AR bipole. Taking into account the AR magnetic field evolution, we infer that magnetic field reconnection, occurring at low coronal levels, could have been at the origin of the flare; while in the case of surge this would happen at the chromospheric level.  相似文献   
999.
Direct measurements of the Earth's magnetic field in Italy since 1640 a.d. have been used to check the remanence directions derived from historically dated volcanic rocks of Etna and Vesuvius. Direct measurements consist of the records of L’Aquila and Pola geomagnetic observatories, the repeat stations of the Italian Magnetic Network and the data base of the Historical Italian Geomagnetic Data Catalogue. All have been relocated to the same reference site (Viterbo — lat. 42.45°N, long. 12.03°E) in order to draw a reference secular variation (SV) curve. The direction of the Earth's field at Viterbo has also been calculated from the historical records (2000-1600) of ref. [Jackson, A., Jonkers, A.R.T., Walker, M.R., 2000. Four centuries of geomagnetic secular variation from historical records. Phil. Trans. R. Soc. London, Ser. A 358, 957-990] database. The remanence directions from Etna show a general agreement with the trend of the SV curve, although their inclination is usually lower than that from the direct measurement. The directions from Vesuvius are more scattered. Large discrepancies occur at both volcanoes and in some cases have been ascribed in the literature to poor geographic information, making it difficult to identify the flows actually emplaced during the eruptions reported in the chronicles. Closer examination shows that the great majority of the best-defined remanence directions (semi-angle of confidence α95 < 2.5°) deviate significantly from the geomagnetic direction measured at the time of the emplacement, the angle between the two directions being larger than the α95 value. The value of 2.5-3.0° can thus be regarded as a conservative evaluation of the error when dealing with dating Etna and Vesuvius lava flows older than 17th century, even when the accuracy attained in remanence measurements is higher. In default of a SV curve for Italy derived from archaeological artefacts, a further error in dating is introduced when reference is made to SV curves of other countries, even if well-established, as these are from regions too far from Italy (>600 km) to confidently relocate magnetic directions.  相似文献   
1000.
Satellite-data allows the magnetic field produced by the dynamo within the Earth’s core to be imaged with much more accuracy than previously possible with only ground-based data. Changes in this magnetic field can in turn be used to make some inferences about the core surface flow responsible for them. In this paper, we investigate the improvement brought to core flow computation by new satellite-data based core magnetic field models. It is shown that the main limitation now encountered is no longer the (now high) accuracy of those models, but the “non-modelled secular variation” produced by interaction of the non-resolvable small scales of the core flow with the core field, and by interaction of the (partly) resolvable large scales of the core flow with the small scales of the core field unfortunately masked by the crustal field. We show how this non-modelled secular variation can be taken into account to recover the largest scales of the core flow in a consistent way. We also investigate the uncertainties this introduces in core flows computed with the help of the frozen-flux and tangentially geostrophic assumptions. It turns out that flows with much more medium and small scales than previously thought are needed to explain the satellite-data-based core magnetic field models. It also turns out that a significant fraction of this flow unfortunately happens to be non-recoverable (being either “non-resolvable” because too small-scale, or “invisible”, because in the kernel of the inverse method) even though it produces the detectable “non-modelled secular variation”. Applying this to the Magsat (1980) to Ørsted (2000) field changes leads us to conclude that a flow involving at least strong retrograde vortices below the Atlantic Hemisphere, some less-resolved prograde vortices below the Pacific Hemisphere, and some poorly resolved (and partly non-resolvable) polar vortices, is needed to explain the 1980-2000 satellite-era average secular variation. The characteristics of the fraction of the secular variation left unexplained by this flow are also discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号