首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   394篇
  免费   25篇
  国内免费   31篇
测绘学   5篇
大气科学   30篇
地球物理   70篇
地质学   195篇
海洋学   10篇
天文学   1篇
综合类   20篇
自然地理   119篇
  2023年   4篇
  2022年   7篇
  2021年   7篇
  2020年   15篇
  2019年   12篇
  2018年   15篇
  2017年   13篇
  2016年   14篇
  2015年   14篇
  2014年   26篇
  2013年   24篇
  2012年   21篇
  2011年   20篇
  2010年   16篇
  2009年   25篇
  2008年   20篇
  2007年   28篇
  2006年   34篇
  2005年   20篇
  2004年   20篇
  2003年   17篇
  2002年   10篇
  2001年   6篇
  2000年   2篇
  1999年   5篇
  1998年   7篇
  1997年   5篇
  1996年   4篇
  1995年   7篇
  1994年   6篇
  1993年   6篇
  1992年   3篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
排序方式: 共有450条查询结果,搜索用时 15 毫秒
51.
52.
利用理塘县高山草甸地表温度实测数据,分析6种常用AVHRR分裂窗算法的精度,为青藏高原地区地表温度的卫星反演提供技术支持.结果表明:6种常用AVHRR分裂窗算法反演地表温度与实测值之间有很好的线性正相关关系,反演温度与实测温度最大偏差3.36K,最大平均绝对误差2.25k,最小平均绝对误差0.77K.给出了反演高山草甸地表温度的AVHRR分裂窗算法建议.  相似文献   
53.
With the objective of improving flood predictions, in recent years sophisticated continuous hydrologic models that include complex land‐surface sub‐models have been developed. This has produced a significant increase in parameterization; consequently, applications of distributed models to ungauged basins lacking specific data from field campaigns may become redundant. The objective of this paper is to produce a parsimonious and robust distributed hydrologic model for flood predictions in Italian alpine basins. Application is made to the Toce basin (area 1534 km2). The Toce basin was a case study of the RAPHAEL European Union research project, during which a comprehensive set of hydrologic, meteorological and physiographic data were collected, including the hydrologic analysis of the 1996–1997 period. Two major floods occurred during this period. We compare the FEST04 event model (which computes rainfall abstraction and antecedent soil moisture conditions through the simple Soil Conservation Service curve number method) and two continuous hydrologic models, SDM and TDM (which differ in soil water balance scheme, and base flow and runoff generation computations). The simple FEST04 event model demonstrated good performance in the prediction of the 1997 flood, but shows limits in the prediction of the long and moderate 1996 flood. More robust predictions are obtained with the parsimonious SDM continuous hydrologic model, which uses a simple one‐layer soil water balance model and an infiltration excess mechanism for runoff generation, and demonstrates good performance in both long‐term runoff modelling and flood predictions. Instead, the use of a more sophisticated continuous hydrologic model, the TDM, that simulates soil moisture dynamics in two layers of soil, and computes runoff and base flow using some TOPMODEL concepts, does not seem to be advantageous for this alpine basin. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
54.
Major inorganic ions and stable carbon and oxygen isotopes in stream water, groundwater, groundwater seeps and springs were measured in the Corral Canyon meadow complex and watershed in the Toquima Mountains of central Nevada, USA. The purpose of the study was to determine whether stream water or groundwater was the source of water that supports vegetation in the meadow complex. Water samples from the watershed and meadow complex were mixed cation–HCO3 type. Stream water sampled at different locations in the meadow complex showed variations in temperature, pH and specific conductance. The cation–anion proportions for stream water were similar to groundwater, groundwater seeps and runoff from the meadow complex. Stable oxygen isotope ratios for stream water (?17·1 to ?17·6‰ versus VSMOW) and groundwater and groundwater seeps in the meadow site (?17·0 to ?17·7‰ versus VSMOW) were similar, and consistent with a local meteoric origin. Dissolved inorganic carbon (DIC) and the δ 13CDIC for stream water (?12·1 to ?15·0‰ versus VPDB) were different from that of groundwater from the meadow complex (?15·3 to ?19·9‰ versus VPDB), suggesting different carbon evolution pathways. However, a simple model based on cation–δ 13CDIC suggests that stream water was being recharged by shallow groundwater, groundwater seeps and runoff from the meadow complex. This leads to the conclusion that the source of water that supports vegetation in the meadow complex was primarily groundwater. The results of this study suggest that multiple chemical and stable carbon isotope tracers are useful in determining the source of water that supports vegetation in meadow complexes in small alpine watersheds. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
55.
Grasslands and agro-ecosystems occupy one-third of the global terrestrial area. However, great uncertainty still exists about their contributions to the global carbon cycle. This study used various com...  相似文献   
56.
57.
Abstract The Hercynian granitic basement which forms the Tenda Massif in NE Corsica represents part of the leading edge of the European Plate during middle-to-late Cretaceous (Eoalpine) high P metamorphism. The metamorphism of this basement, induced by the overthrusting of a blueschist facies (schistes lustrés) nappe, was confined to a major ductile shear zone (c. 1000m thick) within which deformation increases upwards towards the overlying nappe. Metamorphism within the basement mostly records lower blueschist facies conditions (crossite + epidote) except near the base of the shear zone where the greenschist facies assemblage albite + actinolitic amphibole has developed instead of crossite. Study of the primary mafic phase breakdown reactions within hornblende granodiorite reveals the following metamorphic zonation. Zone 1: biotite to chlorite. Towards zone 2: biotite to phengite. Zone 2: Hornblende to actinolitic Ca-amphibole + albite + sphene, and biotite to actinolitic Ca-amphibole + albite + phengite + Ti-ore + epidote. Zone 3: Hornblende to crossite + low Ti-biotite + phengite + sphene, and biotite to crossite + low Ti-biotite + phengite + Ti-ore + sphene ± epidote. P-T conditions at the base of the shear zone are estimated to have been 390-490°C at 600-900 M Pa (6-9kbar) and the Corsican basement is therefore deduced to have been buried to 20-30 km during metamorphism. This relatively shallow metamorphism contrasts with some other areas in the Western Alps where the Eoalpine event apparently buried the European continental crust to depths of 80 km or more. As there is no evidence for a long history of blueschist facies metamorphism prior to the involvement of the European continent, it is deduced that the Eoalpine blueschists were produced during the collision of the Insubric plate with Europe, rather than during Tethyan intraoceanic subduction. Coherent blueschist terrains such as the schistes lustres probably record buovant feature collision and obduction tectonics rather than any preceding oceanic subduction.  相似文献   
58.
Progress () of the infiltration-driven reaction, 4olivine +5CO2 + H2O = talc + 5magnesite, that occurred during Barrovianregional metamorphism, varies at the cm-scale by a factor of3·5 within an 3 m3 volume of rock. Mineral and stableisotope compositions record that XCO2, 18Ofluid, and 13Cfluidwere uniform within error of measurement in the same rock volume.The conventional interpretation of small-scale variations in in terms of channelized fluid flow cannot explain the uniformityin fluid composition. Small-scale variations in resulted insteadbecause (a) reactant olivine was a solid solution, (b) initiallythere were small-scale variations in the amount and compositionof olivine, and (c) fluid composition was completely homogenizedover the same scale by diffusion–dispersion during infiltrationand subsequent reaction. Assuming isochemical reaction, spatialvariations in image variations in the (Mg + Fe)/Si of the parentrock rather than the geometry of metamorphic fluid flow. Ifinfiltration-driven reactions involve minerals fixed in composition,on the other hand, spatial variations in do directly imagefluid flow paths. The geometry of fluid flow can never be determinedfrom geochemical tracers over a distance smaller than the oneover which fluid composition is completely homogenized by diffusion–dispersion. KEY WORDS: Alpine Barrovian metamorphism; diffusion; metamorphic fluid composition; metamorphic fluid flow; reaction progress  相似文献   
59.
—The Rif belt forms with the Betic Cordilleras an asymmetric arcuate mountain belt (Gibraltar Arc) around the Alboran Sea, at the western tip of the Alpine orogen. The Gibraltar Arc consists of an exotic terrane (Alboran Terrane) thrust over the African and Iberian margins. The Alboran Terrane itself includes stacked nappes which originate from an easterly, Alboran-Kabylias-Peloritani-Calabria (Alkapeca) continental domain, and displays Variscan low-grade and high-grade schists (Ghomarides-Malaguides and Sebtides-Alpujarrides, respectively), shallow water Mesozoic sediments (mainly in the Dorsale Calcaire passive margin units), and infracontinental peridotite slices (Beni Bousera, Ronda). During the Late Cretaceous?-Eocene, the Alboran Terrane was likely located south of a SE-dipping Alpine-Betic subduction (cf. Nevado-Filabride HP-LT metamorphism of central-eastern Betics). An incipient collision against Iberia triggered back-thrust tectonics south of the deformed terrane during the Late Eocene-Oligocene, and the onset of the NW-dipping Apenninic-Maghrebian subduction. The early, HP-LT phase of the Sebtide-Alpujarride metamorphism could be hypothetically referred to the Alpine-Betic subduction, or alternatively to the Apenninic-Maghrebian subduction, depending on the interpretation of the geochronologic data set. Both subduction zones merged during the Early Miocene west of the Alboran Terrane and formed a triple junction with the Azores-Gibraltar transform fault. A westward roll back of the N-trending subduction segment was responsible for the Neogene rifting of the internal Alboran Terrane, and for its coeval, oblique docking onto the African and Iberian margins. Seismic evidence of active E-dipping subduction, and opposite paleomagnetic rotations in the Rif and Betic limbs of the Gibraltar Arc support this structurally-based scenario.  相似文献   
60.
近40年甘南草原生命地带偏移趋势及干湿变化   总被引:1,自引:0,他引:1       下载免费PDF全文
利用Holdridge生命地带系统对1971—2010年甘南草原的Holdridge生命地带偏移趋势及干湿变化进行分析,发现甘南草原目前仍属于青藏高原高寒植被地区的亚高山高寒草甸生命地带,但由于甘南草原生物温度明显升高,甘南草原南部和北部降水量呈现不同的变化趋势,位于青藏高原边坡地带的甘南草原的Holdridge生命地带距平均中心的偏移趋势逐年增大,甘南草原生态系统的稳定性在减弱;甘南草原潜在蒸散率以0.02/10 a~0.03/10 a趋势上升,其中以玛曲上升最明显,达0.03/10 a;20世纪90年代后,甘南草原呈明显的暖干化趋势,其中以位于南部的碌曲、玛曲变化最为明显,碌曲已由极湿润区转变为湿润区;玛曲有从极湿润区向湿润区过渡的趋势。影响甘南草原潜在蒸散率上升的主要气候因子是温度,其次为降水和空气湿度,温度上升是甘南草原暖干化的主要原因。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号