首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   594篇
  免费   143篇
  国内免费   299篇
测绘学   7篇
大气科学   171篇
地球物理   129篇
地质学   484篇
海洋学   68篇
天文学   13篇
综合类   34篇
自然地理   130篇
  2024年   2篇
  2023年   30篇
  2022年   25篇
  2021年   35篇
  2020年   26篇
  2019年   29篇
  2018年   29篇
  2017年   25篇
  2016年   38篇
  2015年   47篇
  2014年   67篇
  2013年   61篇
  2012年   73篇
  2011年   76篇
  2010年   41篇
  2009年   40篇
  2008年   41篇
  2007年   41篇
  2006年   44篇
  2005年   38篇
  2004年   29篇
  2003年   26篇
  2002年   23篇
  2001年   32篇
  2000年   26篇
  1999年   16篇
  1998年   17篇
  1997年   15篇
  1996年   9篇
  1995年   9篇
  1994年   2篇
  1993年   4篇
  1992年   5篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1986年   5篇
  1984年   3篇
  1983年   1篇
排序方式: 共有1036条查询结果,搜索用时 62 毫秒
101.
Methane(CH4 ) emissions from paddy rice fields substantially contribute to the dramatic increase of this greenhouse gas in the atmosphere.Due to great concern about climate change,it is necessary to predict the effects of the dramatic increase in atmospheric carbon dioxide(CO2 ) on CH4 emissions from paddy rice fields.CH4MOD 1.0 is the most widely validated model for simulating CH4 emissions from paddy rice fields exposed to ambient CO2(hereinafter referred to as aCO2 ).We upgraded the model to CH4MOD 2.0 b...  相似文献   
102.
A coupled chemical/dynamical model (SOCOL-SOlar Climate Ozone Links) is applied to study the impacts of future enhanced CO and NOx emissions over eastern China on regional chemistry and climate. The result shows that the increase of CO and NOx emissions has significant effects on regional chemistry, including NOx, CO, O3, and OH concentrations. During winter, the CO concentration is uniformly increased in the northern hemisphere by about 10 ppbv. During summer, the increase of CO has a regional distribution. The change in O3, concentrations near eastern China has both strong seasonal and spatial variations. During winter, the surface O3, concentrations decrease by about 2 ppbv, while during summer they increase by about 2 ppbv in eastern China. The changes of CO, NOx, and O3, induce important impacts on OH concentrations. The changes in chemistry, especially O3, induce important effects on regional climate. The analysis suggests that during winter, the surface temperature decreases and air pressure increases in central-eastern China. The changes of temperature and pressure produce decreases in vertical velocity. We should mention that the model resolution is coarse, and the calculated concentrations are generally underestimated when they are compared to measured results. However, because this model is a coupled dynamical/chemical model, it can provide some useful insights regarding the climate impacts due to changes in air pollutant emissions.  相似文献   
103.
CO2 efflux was estimated using different regression methods in static chamber observation from an alpine meadow on the Qinghai-Tibetan Plateau. The CO2 efflux showed a seasonal pattern, with the maximun flux occurring in the middle of July. The temperature sensitivity of CO2 efflux (Q10> was 3.9, which was at the high end of the range of global values. CO2 emissions calculated by linear and nonlinear regression were significantly different (p<0.05). Compared with the linear regression, CO2 emissions calculated by exponential regression and quadratic regression were 12.7% and 11.2% larger, respectively. However, there were no significant differences in temperature sensitivity values estimated by the three methods. In the entire growing season, the CO2 efflux estimated by linear regression may be underestimated by up to 25% compared to the real CO2 efflux. Consequently, great caution should be taken when using published flux data obtained by linear regression of static chamber observations to estimate the regional CO2 flux in alpine meadows on the Qinghai-Tibetan Plateau.  相似文献   
104.
105.
A simulation of climate change trends over North China in the past 50 years and future 30 years was performed with the actual greenhouse gas concentration and IPCC SRES B2 scenario concentration by IAP/LASG GOALS 4.0 (Global Ocean-Atmosphere-Land system coupled model), developed by the State Key Laboratory of Numerical Modelling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS). In order to validate the model, the modern climate during 1951-2000 was first simulated by the GOALS model with the actual greenhouse gas concentration, and the simulation results were compared with observed data. The simulation results basically reproduce the lower temperature from the 1960s to mid-1970s and the warming from the 1980s for the globe and Northern Hemisphere, and better the important cold (1950 1976) and warm (1977-2000) periods in the past 50 years over North China. The correlation coefficient is 0.34 between simulations and observations (significant at a more than 0.05 confidence level). The range of winter temperature departures for North China is between those for the eastern and western China's Mainland. Meanwhile, the summer precipitation trend turning around the 1980s is also successfully simulated. The climate change trends in the future 30 years were simulated with the CO2 concentration under IPCC SRES-B2 emission scenario. The results show that, in the future 30 years, winter temperature will keep a warming trend in North China and increase by about 2.5~C relative to climate mean (1960-1990). Meanwhile, summer precipitation will obviously increase in North China and decrease in South China, displaying a south-deficit-north-excessive pattern of precipitation.  相似文献   
106.
Corrections of density effects resulting from air-parcel expansion/compression are important in interpreting eddy covariance fluxes of water vapor and CO2 when open-path systems are used. To account for these effects, mean vertical velocity and perturbation of the density of dry air are two critical parameters in treating those physical processes responsible for density variations. Based on various underlying assumptions, different studies have obtained different formulas for the mean vertical velocity and perturbation of the density of dry air, leading to a number of approaches to correct density effects. In this study, we re-examine physical processes related to different assumptions that are made to formulate the density effects. Specifically, we re-examine the assumptions of a zero dry air flux and a zero moist air flux in the surface layer, used for treating density variations, and their implications for correcting density effects. It is found that physical processes in relation to the assumption of a zero dry air flux account for the influence of dry air expansion/compression on density variations. Meanwhile, physical processes in relation to the assumption of a zero moist air flux account for the influence of moist air expansion/compression on density variations. In this study, we also re-examine mixing ratio issues. Our results indicate that the assumption of a zero dry air flux favors the use of the mixing ratio relative to dry air, while the assumption of a zero moist air flux favors the use of the mixing ratio relative to the total moist air. Additionally, we compare different formula for the mean vertical velocity, generated by air-parcel expansion/compression, and for density effect corrections using eddy covariance data measured over three boreal ecosystems.  相似文献   
107.
We have analyzed spectra of CO recorded with the instrument PFS onboard Mars Express in the (1-0) band. The dataset we used ranges in time from January until June 2004 (LS=331°.17 until LS=51°.61; end of Mars Year 26, beginning of Mars Year 27). The aim of this work was to determine the amplitude of the CO mixing ratio departures from the mean globally averaged value currently admitted (8±3×10-4) [Kaplan, L.D., Connes, J., Connes, P., 1969. Carbon monoxide in the martian atmosphere. Astron. J. 157, L187-L192] as a function of season, local time and location on the planet. We therefore processed the data from 90 calibrated orbits. The globally averaged CO mixing ratio value we derive from our dataset, 11.1×10-4, is compatible with the range found by Kaplan et al. [1969. Carbon monoxide in the martian atmosphere. Astron. J. 157, L187-L192], although somewhat higher than the “standard” value. However, the CO mixing ratio we retrieve exhibits large variations (roughly between 3×10-4 and 18×10-4). Such relative variations have been used on a statistical basis to derive main trends as a function of latitude for three LS ranges: 331-360°, 0-30° and 30-52°. For the first LS range, we seem to have an enhancement of the CO mixing ratio towards the northern latitudes, probably linked to the CO2 condensation in winter on the north polar cap. The situation for the two other LS ranges is not so clear, mainly as we lack data on the southern hemisphere. We roughly agree with the work of Krasnopolsky [2007. Long-term spectroscopic observations of Mars using IRTF/CSHELL: mapping of O2 dayglow, CO and search for CH4. Icarus 190, 93-102] for LS=331-360°, thus confirming the effect of seasonal condensation of CO2 on the north polar cap, but we have no agreement for other seasons.  相似文献   
108.
Large areas of Europe, especially in the Alps, are covered by carbonate rocks and in many alpine regions, karst springs are important sources for drinking water supply. Because of their high variability and heterogeneity, the understanding of the hydrogeological functioning of karst aquifers is of particular importance for their protection and utilisation. Climate change and heavy rainfall events are major challenges in managing alpine karst aquifers which possess an enormous potential for future drinking water supply. In this study, we present research from a high-alpine karst system in the UNESCO Biosphere Reserve Großes Walsertal in Austria, which has a clearly defined catchment and is drained by only one spring system. Results show that (a) the investigated system is a highly dynamic karst aquifer with distinct reactions to rainfall events in discharge and electrical conductivity; (b) the estimated transient atmospheric CO2 sink is about 270 t/a; (c) the calculated carbonate rock denudation rate is between 23 and 47 mm/1000a and (d) the rainfall-discharge behaviour and the internal flow dynamics can be successfully simulated using the modelling package KarstMod. The modelling results indicate the relevance of matrix storage in determining the discharge behaviour of the spring, particularly during low-flow periods. This research and the consequent results can contribute and initiate a better understanding and management of alpine karst aquifers considering climate change with more heavy rainfall events and also longer dry periods.  相似文献   
109.
Water Self-Softening Processes at Waterfall Sites   总被引:1,自引:0,他引:1  
Many rivers in tropical and subtropical karst regions are supersaturated with respect to CaCO3 and have high water hardness. After flowing through waterfall sites, river water is usually softened, accompanied by tufa formation, which is simply described as a result of water turbulence in fast-flowing water. In this paper, a series of laboratory experiments are designed to simulate the hydrological conditions at waterfall sites. The influences of air-water interface, water flow velocity, aeration and solid-water interface on water softening are compared and evaluated on a quantitative basis. The results show that the enhanced inorganic CO2 outgassing due to sudden hydrological changes occurring at waterfall sites is the principal cause of water softening at waterfall sites. Both air-water interface area and water flow velocity increase as a result of the "aeration effect", "low pressure effect" and "jet-flow effect" at waterfall sites, which greatly accelerates CO2 outgassing and therefore makes natural w  相似文献   
110.
Methane-rich fluids were recognized to be hosted in the reservoir volcanic rocks as primary inclusions.Samples were collected from core-drillings of volcanic gas reservoirs with reversed δ12C of alkane in the Xujiaweizi depression of the Songliao Basin. The volcanic rocks are rhyolite dominant being enriched in the more incompatible elements like Cs, Rb, Ba, Th, U and Th with relative high LREE, depleted HREE and negative anomalies of Ti and Nb,suggesting a melt involving both in mantle source and crustal assimilation. Primary fluids hosted in the volcanic rocks should have the same provenance with the magma. The authors concluded that the enclosed CH4 in the volcanics are mantle/magma-derived alkane and the reversed δ13C of alkane in the corresponding gas reservoirs is partly resulted from mixture between biogenic and abiogenic gases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号