首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97篇
  免费   2篇
  国内免费   8篇
地球物理   6篇
地质学   69篇
海洋学   8篇
天文学   1篇
综合类   3篇
自然地理   20篇
  2021年   3篇
  2020年   1篇
  2018年   2篇
  2016年   3篇
  2015年   4篇
  2014年   5篇
  2013年   3篇
  2012年   3篇
  2011年   3篇
  2010年   6篇
  2009年   4篇
  2008年   7篇
  2007年   6篇
  2006年   10篇
  2005年   4篇
  2004年   2篇
  2003年   4篇
  2002年   4篇
  2001年   4篇
  2000年   3篇
  1999年   3篇
  1998年   2篇
  1997年   3篇
  1996年   5篇
  1995年   1篇
  1994年   5篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1987年   1篇
  1982年   1篇
  1981年   1篇
排序方式: 共有107条查询结果,搜索用时 31 毫秒
61.
西藏东南部末次冰期早阶段冰川作用及其古气候意义   总被引:1,自引:1,他引:0  
西藏东南部的"古乡冰期"和"白玉冰期"是划分中国第四纪冰期的蓝本.其中,白玉冰期即末次冰期,分为早阶段和晚阶段,相对应的冰川沉积广泛分布于本区的波堆藏布谷地.已有的冰川数值年代结果显示,末次冰期晚阶段的冰川作用发生于海洋氧同位素阶段(MIS)2.然而,关于早阶段的冰进记录,目前却未有确切的年代学证据,此次冰川作用究竟发...  相似文献   
62.
藏东南波堆藏布江流域古乡冰期冰川重建   总被引:1,自引:1,他引:0  
"古乡冰期"是青藏高原第四纪冰川作用中最具代表性的冰期之一,指代的是倒数第二次冰期,其命名依据来源于藏东南波堆藏布江谷地、保存于古乡一带的终碛-侧碛垄,已有的宇宙成因核素10Be暴露测年结果显示其发生于海洋氧同位素阶段(MIS)6.然而,古乡冰期时波堆藏布江流域冰川作用范围、冰量及平衡线高度(ELA)等关键信息,仍有待...  相似文献   
63.
Glacial deposits are present at the head of the Ürümqi River valley, Tianshan, Central Asia. 10Be surface exposure ages of 15 boulders from three sites along a 12 km valley transect range from 9 to 21 ka suggesting emplacement by glacial retreat and advance commencing at the global last glacial maximum (LGM) and most likely abating in the early Holocene. Although the age spread for a given locality is not small, perhaps indicating post-depositional reworking, maximum ages per site are either coeval with or are post-LGM and inconsistent with previous pre-LGM electron spin resonance ages.  相似文献   
64.
The extent of glaciation in northwestern Alaska, the source of sediment supply to the Chukchi shelf and slope, and the movement of sea ice and icebergs across the shelf during the last glacial maximum (LGM) remain poorly constrained. Here we present geophysical and geological data from the outer Chukchi margin that reveal a regionally extensive, heavily ice-scoured surface ∼ 5-8 m below the modern seafloor. Radiocarbon dating of this discrete event yields age estimates between 10,600 and 11,900 14C yr BP, indicating the discharge event occurred during the Younger Dryas. Based on mineralogy of the ice-rafted debris, the icebergs appear to be sourced from the northwestern Alaskan margin, which places important constraints on the ice extent in northern Alaska during the LGM as well as existing circulation models for the region.  相似文献   
65.
The analysis of low-field anisotropy of magnetic susceptibility (AMS) was used to reconstruct the subglacial deposition conditions during the Main Stadial of the Odranian Glaciation (MIS 6) in till deposits from a site in Dębe (central Poland). Based on the AMS parameters, six till beds were identified (intervals 1–6). The declination of the maximum magnetic susceptibility axis (k1) indicates that the ice sheet was moving in from the northwest. The obtained results confirm the thesis about the preferred direction of ice-sheet transgression during the Odranian Glaciation (MIS 6) in this part of Poland. This interpretation is also confirmed by data obtained from measurements of the long axis of clasts, which agree with the orientation of k1. Based on the AMS results, a significant part of the profile was deformed through simple shear and direct interaction of the ice sheet with the underlying sediment (beds 2–5). The lowest part of the till (bed 6) may have been deposited on a southeast-trending slope or post-depositional deformed by uneven loading of the ice cover. The upper part of the profile (especially in interval 1) could be deposited with an impact of pore water.  相似文献   
66.
青藏高原东北部最近两次冰期降温幅度的初步估算   总被引:2,自引:0,他引:2  
基于冰楔假型和原生沙楔证据,青藏高原东北部倒数第二次冰期的气温比现在低12℃以上,末次冰期最盛期低11℃以上。高原上冰期的降温幅度明显大于同纬度的其他地区,因此青藏高原对气候变化的放大作用在其本身也有表现。青藏高原冰期降温幅度增大的原因可能主要在于冰期中冰川与荒漠面积增加导致的地面反射率增高。  相似文献   
67.
Recent geochronological investigations reinforce the early suggestion that the upper part of the Paleoproterozoic Huronian Supergroup of Ontario,Canada is present in the Animikie Basin on the south shore of Lake Superior.These rocks,beginning with the glaciogenic Gowganda Formation,are interpreted as passive margin deposits.The absence of the lower Huronian(rift succession) from the Animikie Basin may be explained by attributing the oldest Paleoroterozoic rocks in the Animikie Basin(Chocolay Group)to deposition on the upper plate of a north-dipping detachment fault,which lacks sediments of the rift phase.Following thermal uplift that led to opening of the Huronian Ocean on the south side of what is now the Superior province,renewed uplift(plume activity) caused large-scale gravitational folding of the Huronian Supergroup accompanied by intrusion of the Nipissing diabase suite and Senneterre dikes at about 2.2 Ga.Termination of passive margin sedimentation is normally followed by ocean closure but in the Huronian and Animikie basins there was a long hiatus- the Great Stratigraphic Gap- which lasted for about 350 Ma.This hiatus is attributed to a second prolonged thermal uplift of part of Kenorland that culminated in complete dismemberment of the supercontinent shortly before 2.0 Ga by opening of the Circum-Superior Ocean.These events caused regional uplift(the Great Stratigraphic Gap) and delayed completion of the Huronian Wilson Cycle until a regional compressional tectonic episode,including the Penokean orogeny,belatedly flooded the southern margin of the Superior province with foreland basin deposits,established the limits of the Superior structural province and played an important role in constructing Laurentia.  相似文献   
68.
本文通过钱塘江深切谷的论述对末次冰期深切谷的恢复主要依据下列证据进行:(1)谷底为侵蚀不整合面,为末次冰期海平面下降,河流侵蚀切割所致;(2)谷内为异常厚的河流沉积物所充填,是冰后期海平面上升时形成,其中河漫滩沉积年代约14000~7500a以前;(3)深切谷之上被海相地层覆盖。超浅层生物气田分布在深切谷内,当今河流及全新世晚期河口湾与末次冰期深切谷既有区别又有继承性,其流域是浅层生物气藏分布的有利地段。  相似文献   
69.
The Pyoza River area in the Arkhangelsk district exposes sedimentary sequences suitable for study of the interaction between consecutive Valdaian ice sheets in Northern Russia. Lithostratigraphic investigations combined with luminescence dating have revealed new evidence on the Late Pleistocene history of the area. Overlying glacigenic deposits of the Moscowian (Saalian) glaciation marine deposits previously confined to three separate transgression phases have all been connected to the Mikulinian (Eemian) interglacial. Early Valdaian (E. Weichselian) proglacial, lacustrine and fluvial deposits indicate glaciation to the east or north and consequently glacier damming and meltwater run-off in the Pyoza area around 90–110 ka BP. Interstadial conditions with forest-steppe tundra vegetation and lacustrine and fluvial deposition prevailed at the end of the Early Valdaian around 75–95 ka BP. A terrestrial-based glaciation from easterly uplands reached the Pyoza area at the Early to Middle Valdaian transition around 65–75 ka BP and deposited glaciofluvial strata and subglacial till (Yolkino Till). During deglaciation, laterally extensive glaciolacustrine sediments were deposited in ice-dammed lakes in the early Middle Valdaian around 55–75 ka BP. The Barents–Kara Sea ice sheet deposited the Viryuga Till on the lower Pyoza from northerly directions. The ice sheet formed the Pyoza marginal moraines, which can be correlated with the Markhida moraines further east, and proglacial lacustrine deposition persisted in the area during the first part of the Middle Valdaian. Glacio-isostatic uplift caused erosion followed by pedogenesis and the formation of a deflation horizon in the Middle Valdaian. Widely dispersed periglacial river plains were formed during the Late Valdaian around 10–20 ka BP. Thus, the evidence of a terrestrial-based ice sheet from easterly uplands in the Pyoza area suggests that local piedmont glaciers situated in highlands such as the Timan Ridge or the Urals could have developed into larger, regionally confined ice sheets. Two phases of ice damming and development of proglacial lakes occurred during the Early and Middle Valdaian. The region did not experience glaciation during the Late Valdaian.  相似文献   
70.
For the reconstruction of past climate variations,investigations on the history of glaciers are necessary.In the Himalaya,investigations like these have a rather short tradition in comparison with other mountains on earth.At the same time,this area on the southern margin of Tibet is of special interest because of the question as to the monsoon-influence that is connected with the climate-development.Anyhow,the climate of High Asia is of global importance.Here for the further and regionally intensifying answer to this question,a glacial glacier reconstruction is submitted from the CentralHimalaya,more exactly from the Manaslu-massif.Going on down-valley from the glacial-historical investigations of 1977 in the upper Marsyandi Khola(Nadi) and the partly already published results of field campaigns in the middle Marsyandi Khola and the Damodar- and Manaslu Himal in the years 1995,2000,2004 and 2007,new geomorphological and geological field- and laboratory data are introduced here from the Ngadi(Nadi) Khola and the lower Marsyandi Nadi from the inflow of the Ngadi(Nadi) Khola down to the southern mountain foreland.There has existed a connected ice-stream-network drained down to the south by a 2,100-2,200 m thick and 120 km long Marsyandi Nadi main valley glacier.At a height of the valley bottom of c.1,000 m a.s.l.the Ngadi Khola glacier joined the still c.1,300 m thick Marsyandi parent glacier from the Himalchuli-massif(Nadi(Ngadi) Chuli) – the south spur of the Manaslu Himal.From here the united glacier tongue flowed down about a further 44 km to the south up to c.400 m a.s.l.(27°57'38 "N/84°24'56" E) into the Himalaya fore-chains and thus reached one of or the lowest past ice margin position of the Himalayas.The glacial(LGP(Last glacial period),LGM(Last glacial maximum) Würm,Stage 0,MIS 3-2) climatic snowline(ELA = equilibrium line altitude) has run at 3,900 to 4,000 m a.s.l.and thus c.1,500 altitude meters below the current ELA(Stage XII) at 5,400-5,500 m a.s.l.The reconstructed,maximum lowering of the climatic snowline(ΔELA = depression of the equilibrium line altitude) about 1,500 m corresponds at a gradient of 0.6°C per 100 altitude meters to a High Glacial decrease in temperature of 9°C(0.6 × 15 = 9).At that time the Tibetan inland ice has caused a stable cold high,so that no summer monsoon can have existed there.Accordingly,during the LGP the precipitation was reduced,so that the cooling must have come to more than only 9°C.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号