首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55篇
  免费   7篇
  国内免费   20篇
大气科学   1篇
地球物理   2篇
地质学   65篇
海洋学   2篇
综合类   9篇
自然地理   3篇
  2020年   1篇
  2013年   2篇
  2012年   3篇
  2011年   1篇
  2010年   1篇
  2009年   3篇
  2008年   4篇
  2007年   4篇
  2006年   2篇
  2005年   6篇
  2004年   9篇
  2003年   8篇
  2002年   1篇
  2001年   1篇
  2000年   3篇
  1999年   2篇
  1998年   6篇
  1997年   4篇
  1996年   2篇
  1995年   1篇
  1994年   4篇
  1993年   2篇
  1992年   1篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1988年   5篇
  1985年   1篇
排序方式: 共有82条查询结果,搜索用时 46 毫秒
31.
本文对富钾火山岩及其地幔包体和橄榄石捕虏晶中的包裹体进行了详细观察研究,并分别测量了熔融包裹体的均一温度(富钾火山岩1150—1200℃,地幔包体1200—1280℃,捕虏晶1200℃),在此基础上探讨了包裹体所反映的成因意义。通过包裹体的研究,进一步验证了如下结论:地幔包体与橄榄石捕虏晶有相同成因;地幔是含水的,地幔岩发生过部分熔融。  相似文献   
32.
The trace element composition of silicate inclusions in diamonds: a review   总被引:1,自引:0,他引:1  
On a global scale, peridotitic garnet inclusions in diamonds from the subcratonic lithosphere indicate an evolution from strongly sinusoidal REEN, typical for harzburgitic garnets, to mildly sinusoidal or “normal” patterns (positive slope from LREEN to MREEN, fairly flat MREEN–HREEN), typical for lherzolitic garnets. Using the Cr-number of garnet as a proxy for the bulk rock major element composition it becomes apparent that strong LREE enrichment in garnet is restricted to highly depleted lithologies, whereas flat or positive LREE–MREE slopes are limited to less depleted rocks. For lherzolitic garnet inclusions, there is a positive relation between equilibration temperature, enrichment in MREE, HREE and other HFSE (Ti, Zr, Y), and decreasing depletion in major elements. For harzburgitic garnets, relations are not linear, but it appears that lherzolite style enrichment in MREE–HREE only occurs at temperatures above 1150–1200 °C, whereas strong enrichment in Sr is absent at these high temperatures. These observations suggest a transition from melt metasomatism (typical for the lherzolitic sources) characterized by fairly unfractionated trace and major element compositions to metasomatism by CHO fluids carrying primarily incompatible trace elements. Melt and fluid metasomatism are viewed as a compositional continuum, with residual CHO fluids resulting from primary silicate or carbonate melts in the course of fractional crystallization and equilibration with lithospheric host rocks.

Eclogitic garnet inclusions show “normal” REEN patterns, with LREE at about 1× and HREE at about 30× chondritic abundance. Clinopyroxenes approximately mirror the garnet patterns, being enriched in LREE and having chondritic HREE abundances. Positive and negative Eu anomalies are observed for both garnet and clinopyroxene inclusions. Such anomalies are strong evidence for crustal precursors for the eclogitic diamond sources. The trace element composition of an “average eclogitic diamond source” based on garnet and clinopyroxene inclusions is consistent with derivation from former oceanic crust that lost about 10% of a partial melt in the garnet stability field and that subsequently experienced only minor reenrichment in the most incompatible trace elements. Based on individual diamonds, this simplistic picture becomes more complex, with evidence for both strong enrichment and depletion in LREE.

Trace element data for sublithospheric inclusions in diamonds are less abundant. REE in majoritic garnets indicate source compositions that range from being similar to lithospheric eclogitic sources to strongly LREE enriched. Lower mantle sources, assessed based on CaSi–perovskite as the principal host for REE, are not primitive in composition but show moderate to strong LREE enrichment. The bulk rock LREEN–HREEN slope cannot be determined from CaSi–perovskites alone, as garnet may be present in these shallow lower mantle sources and then would act as an important host for HREE. Positive and negative Eu anomalies are widespread in CaSi–perovskites and negative anomalies have also been observed for a majoritic garnet and a coexisting clinopyroxene inclusion. This suggests that sublithospheric diamond sources may be linked to old oceanic slabs, possibly because only former crustal rocks can provide the redox gradients necessary for diamond precipitation in an otherwise reduced sublithospheric mantle.  相似文献   

33.
The Archean lithospheric mantle beneath the Kaapvaal–Zimbabwe craton of Southern Africa shows ±1% variations in seismic P-wave velocity at depths within the diamond stability field (150–250 km) that correlate regionally with differences in the composition of diamonds and their syngenetic inclusions. Seismically slower mantle trends from the mantle below Swaziland to that below southeastern Botswana, roughly following the surface outcrop pattern of the Bushveld-Molopo Farms Complex. Seismically slower mantle also is evident under the southwestern side of the Zimbabwe craton below crust metamorphosed around 2 Ga. Individual eclogitic sulfide inclusions in diamonds from the Kimberley area kimberlites, Koffiefontein, Orapa, and Jwaneng have Re–Os isotopic ages that range from circa 2.9 Ga to the Proterozoic and show little correspondence with these lithospheric variations. However, silicate inclusions in diamonds and their host diamond compositions for the above kimberlites, Finsch, Jagersfontein, Roberts Victor, Premier, Venetia, and Letlhakane do show some regional relationship to the seismic velocity of the lithosphere. Mantle lithosphere with slower P-wave velocity correlates with a greater proportion of eclogitic versus peridotitic silicate inclusions in diamond, a greater incidence of younger Sm–Nd ages of silicate inclusions, a greater proportion of diamonds with lighter C isotopic composition, and a lower percentage of low-N diamonds whereas the converse is true for diamonds from higher velocity mantle. The oldest formation ages of diamonds indicate that the mantle keels which became continental nuclei were created by middle Archean (3.2–3.3 Ga) mantle depletion events with high degrees of melting and early harzburgite formation. The predominance of sulfide inclusions that are eclogitic in the 2.9 Ga age population links late Archean (2.9 Ga) subduction-accretion events involving an oceanic lithosphere component to craton stabilization. These events resulted in a widely distributed younger Archean generation of eclogitic diamonds in the lithospheric mantle. Subsequent Proterozoic tectonic and magmatic events altered the composition of the continental lithosphere and added new lherzolitic and eclogitic diamonds to the already extensive Archean diamond suite.  相似文献   
34.
云南哀牢山变质流体特征   总被引:5,自引:0,他引:5  
李文  李光麟 《岩石学报》2000,16(4):649-654
对云南哀牢山的变质岩、混合岩及脉岩中包裹体的化学成分及碳、氢、氧进行研究,结果表明,哀牢山变质流体有多种来源,流体成分复杂,有互不混溶的流体水、CO2有机物。水主要来源于古海水和大气降水,少部分来源于深部岩降水;有机质来源于沉积岩生物质;CO2多数来源于碳酸盐岩,少数来源于有仙质的氧化分解,这些流体受构造运动的驱动而活化迁移,成为成矿物质的搬运介质,参与了本区岩石的改造,是形成本区伟晶岩的重要流体  相似文献   
35.
塔里木盆地北缘古岩溶充填物包裹体特征   总被引:14,自引:6,他引:8  
塔里木盆地北缘露头区奥陶系碳酸盐岩中的古岩溶发育经历了从裸露到埋藏、从淡水作用到热液作用以及从湿润气候到干燥气候的变化,多期次古岩溶作用的叠加导致了充填物地球化学特征的差异性。古岩溶充填物主要有机械沉积充填物、化学淀积充填物和塌积充填物三大类。方解石和萤石包裹体的物理特征、化学相、盐度、均一温度和化学成分均具有多样性,其综合化学特性可划分为四种类型: ①低温、低盐度、NaCl-H2O型; ②低温、高盐度、NaCl-H2O-CaCl2 型;③中温、中盐度NaCl-H2O-MgCl2 型;④高温、中盐度、CO2-NaCl-H2O型。   相似文献   
36.
Melt inclusions in minerals from some volcanoes of the Kurile-Kamchatka region were examined.The studied basaltic andesites and andesites were sampled from volcanoes of the Central Kamchatka depression(Shiveluch and Bezymyannyi),Eastern Kamchatka volcanic belt(Avachinskii and Karymskii),and Iturup Island,Southern Kuriles(Kudryavyi).Basalts of the 1996 eruption of the Karymskii volcanic center and dacites of Dikii Greben'volcano,Southern Kamchatka were also studied.More than 260 melt inclusions from 31 rock samples were homogenized,and quenched glasses were analyzed using electron and ion microprobes.The compositions of melt inclusions in andesitic phenoerysts vary in silica contents from 56 to 80wt%.Al_2 O_3 ,FeO,MgO,CaO decrease and Na_2O and K_2O increase with increasing SiO_2.Many inclusions(about 80% )are dacitic or rhyolitic.However,the compositions of silicic glasses(>65wt% SiO_2)in andesites significantly differ in TiO2,FeO,MgO,CaO,and K_2O contents from those in dacites and rhyolites.High-potassium melts(K_2O 3.8~6.8wt% )with various SiO_2 from 51.4 to 77.2wt% were found in minerals of all volcanoes studied.This indicates a contribution of a component selectively enriched in potassium to magmas of the whole region.A great compositional diversity of melt inclusions in plagioelase phenocrysts from the Bezymyannyi andesites suggests a complex history of plagioclase crystallization and magma evolution in the andesite formation.Melts from different volcanoes strongly vary in volatile contents.The highest H_2O contents are found in the melts from Shiveluch(3.0~7.2wt%,4.7wt% on average)and Avachinskii (4.7~4.8wt%);while those are lower in melts of Kudryavyi(0.1~2.6wt% ),Dikii Greben'(0.4~1.8wt%),and Bezymyannyi (<1wt%).Chlorine contents are also variable.The lowest values are found in the Bezymyannyi melts(0.09wt% on average),the highest Cl contents are typical of melt inclusions in minerals from the Karymskii andesites(0.26wt% on average).The melts from Avachinskii,Dikii Greben',Kudryavyi,and Shiveluch show intermediate Cl contents(0.13~0.20wt% ).The pressure of 350~1600 bar determined by CO_2 fluid inclusions in plagioclase from the Shiveluch andesites suggests a magma chamber at a depth of 1.5~6 km. Concentrations of 17 elements were determined in glasses of melt inclusions in plagioclases from five volcanoes(Avachinskii, Bezymyannyi,Dikii Greben',Kudryavyi,and Shiveluch).The studied melts show similar trace-element patterns with Nb and Ti minima and B,K,Be,and Li maxima.The melts are close to typical island arc magmas by Sr/Y,La/Yb,K/Ti,and Ca/St ratios, and have some specific regional geochemical features.REE patterns sensitive to degree of magma differentiation indicate that Kudryavyi magmas are most primitive,while Shiveluch magmas are most evolved.  相似文献   
37.
对岩子脚金矿床黄铁矿矿物学、化学成分与金矿化关系的研究表明:早中期形成的黄铁矿颜色较深,颗粒较粗,金矿化较好;而晚期形成的黄铁矿粒径较小,不含金。总趋势是粒度愈粗含金量愈高。含金黄铁矿表现为S亏损、As偏高。  相似文献   
38.
长期以来,国内外油气勘探主要是针对海相碳酸盐岩和海陆相碎屑岩,火山岩原来一直是油气勘探的禁区。松辽陆内裂谷盆地燕山期由于太平洋板块对中国大陆板块的斜向俯冲,发生弧后伸展裂陷,造成火山岩的大量喷发,以爆发相和溢流相为主。火山岩储层物性较好,不严格受埋深控制,但非均质性强,孔隙度0.5%~18.7%不等,渗透率0.0001×10-3~1×10-3μm2。火山岩裂缝内方解石脉或石英脉中包裹体捕获温度为105~250℃,多数在120~160℃;包裹体中气体3He/4He值分布在2.86×10-7~7.33×10-6,平均为2.48×10-6;R/Ra=0.26~5.24,多数R/Ra>1; 40Ar/36Ar=293~2485,主值区间为500~900;4He/20Ne=0.32~1255,主值区间为10~95和170~370;δ13C1=-17.1‰~-28.7‰,δ13C2=-23.4‰~-32.4‰,δ13Cco2=-10.97‰~-21.73‰。包裹体He、Ar、C等同位素数据表明,存在幔源通道,进而在火山岩中存在幔源无机成因气。根据火山岩产状和分布及其与断裂活动的关系,无机成因气藏主要分布于断裂带附近,有机成因气或有机-无机混源气则远离断裂活动带分布。本文包裹体同位素研究结果对确定松辽盆地深层火山岩储层中的天然气成因类型、分布规律,指导后续天然气勘探具有重要的参考价值。  相似文献   
39.
张正伟  杨晓勇 《地质科学》1998,33(4):475-482
伏牛山东麓主要发育中低温热液型和构造蚀变岩型金矿,矿床分布受区域剪切带控制。两类金矿床各自赋存的围岩不同,且其流体包裹体中的盐度、密度、Na+/K+比值及氢、氧同位素组成显示出较大的差异,表明围岩及成矿流体性质对成矿起联合控制作用。根据包裹体同位素分析,推测成矿物质来源于变质水且有岩浆水和雨水的混入。结合单矿物电子探针测定结果,计算了围岩成岩、变质及成矿的温度、压力和沉淀条件。同时确定了富CO2包裹体的泡腾包裹体群、液相成分的高硫富HCO3-、气相成分中高CO2及CO2/H2O比值等特点是寻找此类金矿床的重要包裹体标志。  相似文献   
40.
Sulfide inclusions in diamonds from the 90-Ma Jagersfontein kimberlite, intruded into the southern margin of the Kaapvaal Craton, were analyzed for their Re–Os isotope systematics to constrain the ages and petrogenesis of their host diamonds. The latter have δ13C ranging between −3.5 and −9.8‰ and nitrogen aggregation states (from pure Type IaA up to 51% total N as B centers) corresponding to time/temperature history deep within the subcontinental lithospheric mantle. Most sulfides are Ni-poor ([Ni + Co]/Fe = 0.05–0.25 for 15 of 17 inclusions), have elevated Cu/[Fe + Ni + Co] ratios (0.02–0.36) and elemental Re–Os ratios between 0.5 and 46 (12 of 14 inclusions) typical of eclogitic to more pyroxenitic mantle sources. Re–Os isotope systematics indicate two generations of diamonds: (1) those on a 1.7 Ga age array with initial 187Os/188Os (187Os/188Osi) of 0.46 ± 0.07 and (2) those on a 1.1 Ga array with 187Os/188Osi of 0.30 ± 0.11. The radiogenic initial Os isotopic composition for both generations of diamond suggests that components with high time-integrated Re–Os are involved, potentially by remobilization of ancient subducted oceanic crust and hybridization of peridotite. A single sulfide with higher Os and Ni content but significantly lower 187Os/188Os hosted in a diamond with less aggregated N may represent part of a late generation of peridotitic diamonds. The paucity of peridotitic sulfide inclusions in diamonds from Jagersfontein and other kimberlites from the Kaapvaal craton contrasts with an overall high relative abundance of diamonds with peridotitic silicate inclusions. This may relate to extreme depletion and sulfur exhaustion during formation of the Kaapvaal cratonic root, with the consequence that in peridotites, sulfide-included diamonds could only form during later re-introduction of sulfur.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号