首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2201篇
  免费   531篇
  国内免费   1089篇
测绘学   27篇
大气科学   206篇
地球物理   333篇
地质学   2610篇
海洋学   260篇
天文学   4篇
综合类   160篇
自然地理   221篇
  2024年   11篇
  2023年   45篇
  2022年   64篇
  2021年   103篇
  2020年   99篇
  2019年   121篇
  2018年   113篇
  2017年   128篇
  2016年   142篇
  2015年   117篇
  2014年   140篇
  2013年   192篇
  2012年   164篇
  2011年   145篇
  2010年   128篇
  2009年   209篇
  2008年   155篇
  2007年   177篇
  2006年   156篇
  2005年   144篇
  2004年   154篇
  2003年   118篇
  2002年   103篇
  2001年   92篇
  2000年   92篇
  1999年   104篇
  1998年   97篇
  1997年   81篇
  1996年   78篇
  1995年   75篇
  1994年   59篇
  1993年   56篇
  1992年   30篇
  1991年   33篇
  1990年   32篇
  1989年   19篇
  1988年   11篇
  1987年   9篇
  1986年   3篇
  1985年   7篇
  1984年   4篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1980年   3篇
  1979年   1篇
  1973年   1篇
排序方式: 共有3821条查询结果,搜索用时 15 毫秒
31.
中国西秦岭碎屑锆石U-Pb年龄及其构造意义   总被引:5,自引:1,他引:4  
西秦岭是北接华北克拉通、西接祁连与柴达木、南接松潘—甘孜地块的东秦岭造山带的西延。文中研究了该区从前寒武纪到三叠纪的碎屑沉积岩。这些碎屑沉积岩中分离出的锆石由LA-ICPMS(激光剥蚀等离子体质谱)进行了U-Pb定年。全岩Nd亏损地幔模式年龄类似于扬子克拉通年龄,主要分布于1.55~1.98Ga,峰值为1.81Ga,而与华北克拉通主要为古元古代与太古宙的模式年龄形成明显的对比。泥盆系中的碎屑锆石930~730Ma的U-Pb年龄指示其与扬子克拉通具亲缘性。930~730Ma是源区地壳的强烈增长阶段。二叠系—三叠系的碎屑沉积岩主体以含老于1600Ma的碎屑锆石为特征。碎屑锆石U-Pb年龄与Sm-Nd同位素组成指示此时华北克拉通南缘的基底岩石成为二叠系—三叠系碎屑沉积岩的重要物源。扬子克拉通在三叠纪时与华北克拉通拼接。西秦岭二叠系—三叠系碎屑沉积岩含有高达50%的华北克拉通南缘的基底岩石。  相似文献   
32.
The Anzishan ophiolite, a typical ophiolitic block of early Carboniferous age in the Mian-Lue suture zone of the Qinling Mountains, central China, consists of amphibolites/metabasalts, gabbros and gabbroic cumulates. All of these rocks, as well as those in the Hunshuiguan-Zhuangke (HZ) block, have compositions similar to normal MORB and back-arc basin basalts (BABB) with high εNd(t) values, indicating that they were derived from a depleted mantle source. The Mian-Lue suture zone also contains blocks of other lithologies, e.g., rift volcanic rocks in the Heigouxia block and arc volcanic rocks in the Sanchazi block. Although they are in fault contact with each other, the presence of these different blocks in the Mian-Lue suture zone may represent a complete Wilson cycle, from initial rifting to open ocean basin to final subduction and continent-continent collision, during the late Paleozoic-early Triassic. In this region, the North and South China Cratons were separated by Paleo-Tethys at least until the early Carboniferous, and final amalgamation of both cratons along the Qinling orogenic belt took place in the Triassic.  相似文献   
33.
This paper investigates rapid channelized debris flow related to rainfalls in small alpine basins. Its goal is to evaluate and correlate different geological and technical aspects with predisposing and triggering factors that can control these phenomena. The study area is the upper part of the Susa Valley where 12 small basins were selected. For each of them, lithological, geomorphological, climatic and technical information were mapped and analysed. Debris-flow triggering conditions, flow and depositional processes were related to physical characteristics of the basin that can be easily measured and quantified. At least three different groups of basins were found: G1) basins with one event each 4–6 years, characterised by massive or blocky calcareous rocks, G2) basins with more than one event per year that show an abundance of layered or sheared fine-grained rocks and G3) basins with recurrence levels exceeding 10 years, activated only by heavy and prolonged rainfalls, marked by massive or blocky coarse-grained igneous rocks. Furthermore, important morphometric differences were found. These considerations are useful in terms of hazard zonation and risk mitigation.  相似文献   
34.
陕西小秦岭华阳川韧性剪切带的特征 及其区域构造意义   总被引:1,自引:0,他引:1  
陕西小秦岭华阳川韧性剪切带发育在新太古界太华群之中,野外调研和显微构造观察结果表明,该韧性剪切带是由构造片岩、眼球状片麻岩组成的深层次韧性剪切带,具有逆冲兼左行走滑的斜冲特征。对韧性剪切带构造片岩黑云母进行^40Ar/^39Ar同位素定年,获得坪年龄为419M±0.6Ma,反等时线年龄为417Ma±0.8Ma。认为华阳川韧性剪切带及其相应的小秦岭区域主导构造变形是发生于419Ma左右的秦岭加里东事件的结果。  相似文献   
35.
东秦岭中部奥陶系-志留系界线地层及腕足动物群   总被引:1,自引:0,他引:1  
许汉奎 《地层学杂志》1996,20(3):165-174
东秦岭中部晚奥陶世和早志留世地层分布较广,化石较丰富,尤其是腕足类,分为寺岗组、石燕河组、刘家坡组和张湾组。曾庆銮等(1993)根据腕足类及其群落的更替,把石燕河组和刘家坡组归於早志留世,因而引起较大争论。本文据岩性将寺岗组和石燕河组分别改称为石燕河组下段和上段,并据腕足类化石认为石燕河组和刘家坡组应归於晚奥陶世、张湾组为早志留世;另据上述地层生物群落的特征及群落的更替,认为从石燕河组到刘家坡组,以及刘家坡组至张湾组恰好反映了全球冰期引起的晚奥陶世海退和早志留世冰期结束引起的海侵,故本区奥陶系-志留系界线宜划在刘家坡组和张湾组之间。  相似文献   
36.
The Rozvadov Pluton is a complex of mainly Variscan granitoid rocks situated near the Bohemian-Bavarian border between Bärnau, Tachov, Rozvadov and Waidhaus, 25 km ESE of the KTB site. Five mappable units can be distinguished, which intruded as folows: (1) slightly deformed leucocratic meta-aplite/metapegmatite dykes with garnet and tourmaline; (2) a complex of cordierite-bearing granitoids, which have been divided into three facies (a) biotite granite with cordierite (at the margin of the complex), (b) biotite-cordierite granite and (c) cordierite tonalite (in the centre of the complex; (3) fine-grained biotite granite of the Rozvadov type with associated pegmatite bodies; (4) two-mica Bärnau granite; and (5) geochemically specialized albite-zinnwaldite-topaz granite (Kríový kámen/Kreuzstein granite) with indications of Sn-Nb-Ta mineralization and associated phosphorus-rich pegmatite cupolas. Rare earth element data suggest that meta-aplite/pegmatite dykes are the result of a batch partial melting process, whereas the compositional variation of the other rock types was mainly controlled by fractional crystallization. The genesis of the cordierite granitoid suite is best explained in terms of a batch melting of metapelitic source followed by crystallization of a cordierite-rich cumulate and K-feldspar enriched melt. The leucocratic pluton constituents — the meta-aplites and the Bärnau and Kíový kámen granites are rich in phosphorus (0.5–0.8%). The main carriers of phosphorus are alkali feldspars, especially K-feldspar (up to 0.8% P2O5). The presence of P-rich leucocratic granites is one of the features distinguishing the Variscan granitoids within the Moldanubian zone from the nearly contemporaneous granitoids in the Saxothuringian zone.  相似文献   
37.
The new procedure of earthquake hazard evaluation developed by Kijko and Sellevoll is tested and applied for the border region of Czechoslovakia and Poland. The new method differs from the conventional approach. It incorporates the uncertainty of earthquake magnitudes, and accepts mixed data containing only large historical events and recent, complete catalogues. Seismic hazard has been calculated for nine regions determined in the border area. In the investigated area, data of historical catalogues are uncertain or, in many cases, the epicentral intensities are unknown. Thus, a number of assumptions have to be adopted in data preparation of catalogues since the year 1200. The calculated values of parameters b in the Gutenberg-Richter frequency-intensity relation as well as the return periods, seem to be reasonable and are generally confirmed by the results obtained from catalogues for the last 80–130 years.  相似文献   
38.
39.
The sandstones of the Dhosa Sandstone Member of Late Callovian and Early Oxfordian age exposed at Ler have been analyzed for their petrofacies, provenance, tectonic setting and diagenetic history. These sandstones are fine to medium grained and poorly- to well sorted. The constituent mineral grains are subangular to subrounded. These sandstones were derived from a mixed provenance including granites, granite–gneisses, low- and high-grade metamorphic and some basic rocks of the Aravalli Range and Nagarparkar Massif. The petrofacies analysis reveals that these sandstones belong to the continental block-, recycled orogen- and rifted continental margin tectonic regime.The imprints of early and deep burial diagenesis of these sandstones include different stages of compaction, cementation, change in crystal boundaries, cement–cement boundaries, chertification and neomorphism. The sequence of cementation includes precipitation of calcite and its subsequent replacement by Fe calcite and silica cements. The typical intermediate burial (2–3 km depth) diagenetic signatures of these sandstones are reflected in the formation of suture and straight-line boundaries, and triple junctions with straight-line boundaries. The depositional environment, relatively low-energy environment that was below storm wave base but subjected to gentle currents, of the Dhosa Sandstone Member controlled the early diagenesis, which in turn influenced the burial diagenesis of these sandstones.  相似文献   
40.
Observations of upper mantle reflectivity at numerous locations around the world have been linked to the presence of a heterogeneous distribution of rock types within a broad layer of the upper mantle. This phenomenon is observed in wide-angle reflection data from Lithoprobe's Alberta Basement Transect [the SAREX and Deep Probe experiments of 1995] and Trans-Hudson Orogen Transect [the THoRE experiment of 1993]. SAREX and Deep Probe image the Archaean lithosphere of the Hearne and Wyoming Provinces, whereas THoRE images the Archaean and Proterozoic lithosphere of the Trans-Hudson Orogen and neighbouring areas.Finite-difference synthetic seismograms are used to constrain the position and physical properties of the reflective layer. SAREX/Deep Probe modelling uses a 2-D visco-elastic finite-difference routine; THoRE modelling uses a pseudospectral algorithm. In both cases, the upper mantle is parameterized in terms of two media. One medium is the background matrix; the other is statistically distributed within the first as a series of elliptical bodies. Such a scheme is suitable for modelling: (1) variations in lithology (e.g., a peridotite matrix with eclogite lenses) or (2) variations in rheology (e.g., lenses of increased strain within a less strained background).The synthetic seismograms show that the properties of heterogeneities in the upper mantle do not change significantly between the two Lithoprobe transects. Beneath the Trans-Hudson Orogen in Saskatchewan, the layer is best modelled to lie at depths between 80 and 150 km. Based on observations from perpendicular profiles, anisotropy of the heterogeneities is inferred. Beneath the Precambrian domains of Alberta, 400 km to the west, upper mantle heterogeneities are modelled to occur between depths of 90 and 140 km. In both cases the heterogeneous bodies within the model have cross-sectional lengths of tens of kilometers, vertical thicknesses less than 1 km, and velocity contrasts from the background of − 0.3 to − 0.4 km/s. Based on consistency with complementary data and other results, the heterogeneous layer is inferred to be part of the continental lithosphere and may have formed through lateral flow or deformation within the upper mantle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号