首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7725篇
  免费   1597篇
  国内免费   2011篇
测绘学   227篇
大气科学   3587篇
地球物理   1475篇
地质学   2586篇
海洋学   794篇
天文学   260篇
综合类   351篇
自然地理   2053篇
  2024年   40篇
  2023年   108篇
  2022年   276篇
  2021年   382篇
  2020年   361篇
  2019年   385篇
  2018年   334篇
  2017年   380篇
  2016年   399篇
  2015年   424篇
  2014年   530篇
  2013年   898篇
  2012年   539篇
  2011年   505篇
  2010年   457篇
  2009年   576篇
  2008年   583篇
  2007年   562篇
  2006年   474篇
  2005年   435篇
  2004年   380篇
  2003年   338篇
  2002年   310篇
  2001年   257篇
  2000年   252篇
  1999年   202篇
  1998年   198篇
  1997年   192篇
  1996年   121篇
  1995年   102篇
  1994年   80篇
  1993年   56篇
  1992年   50篇
  1991年   27篇
  1990年   23篇
  1989年   22篇
  1988年   20篇
  1987年   9篇
  1986年   18篇
  1985年   11篇
  1984年   4篇
  1983年   8篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
62.
Historical data of total dissolved inorganic carbon (CT), together with nitrate and phosphate, have been used to model the evolution of these constituents over the year in the Atlantic water of the Norwegian Sea. Changes in nutrient concentration in the upper layer of the ocean are largely related to biological activity, but vertical mixing with the underlying water will also have an impact. A mixing factor is estimated and used to compute the entrainment of these constituents into the surface water from below. After taking the mixing contribution into account, the resulting nutrient concentration changes are attributed to biological production or decay. The results of the model show that the change in CT by vertical mixing and by biological activity based on nutrient equivalents needs another sink to balance the carbon budget. It cannot be the atmosphere as the surface water is undersaturated with respect to carbon dioxide and is, thus, a source of CT in this region. Inasmuch as the peak deficit of carbon is more than a month later than for the nutrients, the most plausible explanation is that other nitrogen and phosphate sources than the inorganic salts are used together with dissolved inorganic carbon during this period. As nitrate and phosphate show a similar trend, it is unlikely that the explanation is the use of ammonia or nitrogen fixation but rather dissolved organic nitrogen and phosphate, while dissolved organic carbon is accumulating in the water.  相似文献   
63.
64.
The direct photooxidation of coloured dissolved organic matter (CDOM) to dissolved inorganic carbon (DIC) may provide a significant sink for organic carbon in the ocean. To calculate the rate of this reaction on a global scale, it is essential to know its quantum yield, or photochemical efficiency. We have determined quantum yield spectra, φ(λ), (moles DIC/mole photons absorbed) for 14 samples of seawater from environments ranging from a turbid, eutrophic bay to the Gulf Stream. The spectra vary among locations, but can be represented quite well by three pooled spectra for zones defined by location and salinity: inshore φ(λ)=e−(6.66+0.0285(λ−290)); coastal φ(λ)=e−(6.36+0.0140(λ−290)); and open ocean φ(λ)=e−(5.53+0.00914(λ−290)). Production efficiency increases offshore, which suggests that the most highly absorbing and quickly faded terrestrial chromophores are not those directly responsible for DIC photoproduction.  相似文献   
65.
A preliminary study of carbon system in the East China Sea   总被引:1,自引:0,他引:1  
In the central part of the East China Sea, the activity of CO2 in the surface water and total carbonate, pH and alkalinity in the water column were determined in winter and autumn of 1993. The activity of CO2 in the continental shelf water was about 50 ppm lower than that of surface air. This decrease corresponds to the absorption of about 40 gC/m2/yr of atmospheric CO2 in the coastal zone or 1 GtC/yr in the global continental shelf, if this rate is applicable to entire coastal seas. The normalized total carbonate contents were higher in the water near the coast and near the bottom. This increase toward the bottom may be due to the organic matter deposited on the bottom. This conclusion is supported by the distribution of pH. The normalized alkalinity distribution also showed higher values in the near-coast water, but in the surface water, indicating the supply of bicarbonate from river water. The residence time of the East China Sea water, including the Yellow Sea water, has been calculated to be about 0.8 yr from the excess alkalinity and the alkalinity input. Using this residence time and the excess carbonate, we can estimate that the amount of dissolved carbonate transported from the coastal zone to the oceanic basin is about 70 gC/m2/yr or 2 GtC/yr/area-of-global-continental-shelf. This also means that the rivers transport carbon to the oceans at a rate of 30 gC/m2/yr of the coastal sea or 0.8 GtC/yr/ area-of-global shelf, the carbon consisting of dissolved inorganic carbonate and terrestrial organic carbon decomposed on the continental shelf.  相似文献   
66.
In this study, the impact of oceanic processes on the sensitivity of transient climate change is investigated using two sets of coupled experiments with and without tidal forcing, which are termed Exp_Tide and Exp_Control,respectively. After introducing tidal forcing, the transient climate response(TCR) decreases from 2.32 K to 1.90 K,and the surface air temperature warming at high latitudes decreases by 29%. Large ocean heat uptake efficiency and heat storage can explain the low TCR in Exp_Tide. Approximately 21% more heat is stored in the ocean in Exp_Tide(1.10×10~(24) J) than in Exp_Control(0.91×10~(24) J). Most of the large ocean warming occurs in the upper 1 000 m between 60°S and 60°N, primarily in the Atlantic and Southern Oceans. This ocean warming is closely related to the Atlantic Meridional Overturning Circulation(AMOC). The initial transport at mid-and high latitudes and the decline in the AMOC observed in Exp_Tide are both larger than those observed in Exp_Control. The spatial structures of AMOC are also different with and without tidal forcing in present experiments. The AMOC in Exp_Tide has a large northward extension. We also investigated the relationship between AMOC and TCR suggested by previous studies using the present experiments.  相似文献   
67.
68.
A time series of zooplankton sampling carried out at Station 18 off Concepción (36°S, 73°W) from August 2002 to December 2003 allowed the study of annual life cycles of the copepods Calanus chilensis and Centropages brachiatus in association with environmental variability in the coastal upwelling zone. Changes in the abundance of eggs, nauplii, and copepodids were assessed from samples taken at a mean time interval of ca. 20 days. Upwelling variability in near-surface waters was reflected in seasonal changes in salinity, water column stratification, and oxycline depth, as well as a weak seasonal signal in sea surface temperature (1-2 °C). Both copepods exhibited similar life cycles, characterized by continuous reproduction throughout the year. Estimates of generation times, as a function of temperature, were 25-30 days for C. chilensis and 27-35 days for C. brachiatus, predicting about 12 and 10 generations a year, respectively. These estimates were consistent with reproduction pulses observed in the field. It was thus suggested that copepods may grow under non-limiting food conditions in this upwelling area. However, despite continuous reproduction, there were abrupt changes in population sizes along with the disappearance of early naupliar and copepodid stages taking place even during the upwelling season (spring/summer). These changes were attributed to sudden increases in mortality taking place in spring or early summer, after which the populations remained at low levels through the fall and winter. It is thus suggested that, in addition to variability in the physical environment, biological interactions modulating changes in copepod mortality should be considered for understanding copepod life cycles in highly productive upwelling systems.  相似文献   
69.
The trend in Irish Sea nutrient concentrations over the last four decades has been considered to reflect changes in anthropogenic loading. Comparison of a long-term database for the Menai Strait, North Wales, with an established historic data set for the Cypris station, Isle of Man, indicates that climate also has a significant influence on observations of nutrient concentrations. Data are presented detailing long-term shifts in nitrate, phosphate and silicate measurements since the 1960s at these two fixed sampling sites in the Irish Sea. Broad systematic changes observed in all three nutrients over the decades show a rise from the 1960s through to the 1980s, followed generally by an overall decline in the 1990s. Decadal-scale salinity changes occur in the opposite sense to nutrient changes. Anthropogenic inputs from freshwater cannot fully account for observed nutrient trends, neither is there evidence for shifts in nutrient concentrations in oceanic waters over the past four decades. Climatically forced movement in the geographical position of the freshwater/seawater mixing zone over a decadal time scale could, however, give rise to the observed shifts in nutrient concentration and salinity. This cannot alter nutrient concentration and salinity per se, but causes the measurements taken at fixed sampling sites to fluctuate inversely over this time scale. It is concluded that there is complex interplay between anthropogenic loading and climate affecting the distribution of nutrients in the Irish Sea.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号