首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2958篇
  免费   644篇
  国内免费   1310篇
测绘学   32篇
大气科学   1673篇
地球物理   454篇
地质学   1673篇
海洋学   603篇
天文学   11篇
综合类   153篇
自然地理   313篇
  2024年   28篇
  2023年   90篇
  2022年   132篇
  2021年   136篇
  2020年   131篇
  2019年   165篇
  2018年   147篇
  2017年   131篇
  2016年   154篇
  2015年   141篇
  2014年   246篇
  2013年   217篇
  2012年   221篇
  2011年   259篇
  2010年   210篇
  2009年   250篇
  2008年   293篇
  2007年   299篇
  2006年   298篇
  2005年   235篇
  2004年   188篇
  2003年   163篇
  2002年   99篇
  2001年   117篇
  2000年   102篇
  1999年   80篇
  1998年   83篇
  1997年   62篇
  1996年   47篇
  1995年   36篇
  1994年   35篇
  1993年   35篇
  1992年   24篇
  1991年   14篇
  1990年   8篇
  1989年   4篇
  1988年   6篇
  1987年   1篇
  1985年   3篇
  1984年   9篇
  1983年   3篇
  1982年   3篇
  1981年   6篇
  1979年   1篇
排序方式: 共有4912条查询结果,搜索用时 31 毫秒
991.
周雪英  贾健  刘国强  仇会民  杨柳 《气象科技》2018,46(6):1201-1210
本文利用常规观测资料、加密自动站资料、NCEP再分析资料对比分析2017年4月14日("4·14"过程)和2017年5月1—2日("5·1"过程)南疆中部巴州地区强降水过程,探讨春季强降水天气动力学异同。结果表明:春季强降水发生在副热带西风急流活跃,伊朗副热带高压向北伸展,地面冷锋活动,高低空为急流锋区配置背景中。水汽源地位于东经40°的阿拉伯海—里海附近,沿西方路径进入新疆,在有利风场条件下汇合至巴州地区,高低空急流耦合形成次级垂直环流,干冷空气多方向侵入增强春季降水强度。主要差异在于"4·14"过程是副热带西风急流异常北跳、影响系统西风带短波槽、冷空气西方路径,"5·1"过程则是极锋急流与副热带西风急流汇合、深厚长波槽系统、冷空气西北路径;"4·14"过程是典型急流锋区降水伴有对流性降水,强降水发生时形成两支次级环流圈,3股干冷空气从不同方向向中低层气旋性环流附近汇合激发了另一支低层中尺度次级垂直环流圈的建立;"5·1"过程是典型急流冷锋降水,高空干冷空气在垂直方向向下入侵触发和增强冷锋降水,形成了一支完整强大的次级垂直环流圈造成巴州大范围的系统性降水。  相似文献   
992.
苏北一次强降水超级单体风暴过程的诊断分析   总被引:1,自引:0,他引:1       下载免费PDF全文
利用常规观测资料、NCEP再分析资料、FY2C卫星和多普勒雷达资料,对2008年7月22日发生在苏北的一次强降水超级单体风暴过程进行诊断分析。天气分析显示,风暴发生于高湿、较低的抬升凝结高度、强对流不稳定(3 445 J/kg)和中到强的垂直风切变(0~6 km,18 m/s)环境,这种大气环境非常有利于强降水超级单体风暴的发生发展。雷达回波分析揭示,该超级单体的演化可归结为"孤立单体—经典强降水超级单体—减弱东移"三个阶段,持续时间超过2 h。强降水超级单体风暴成熟期,呈现出典型的倒"V"型缺口、中低层有界弱回波区和反射率因子大值区由低层向高层往低层入流一侧倾斜的特征,相应的雷达径向速度场显示在倒"V"型缺口附近的强降水区中存在一个成熟的中气旋。湿位涡的诊断结果表明:高层干冷空气侵入触发潜在对流不稳定能量释放,有利于对流运动的发展;中低层大气对流不稳定与条件对称不稳定共存,既有垂直对流,又有倾斜对流发生,同时边界层的偏东风入流向暴雨区提供充沛的水汽,对暴雨的发生发展起增幅作用。  相似文献   
993.
地形影响下海河流域北系强降水成因分析   总被引:1,自引:0,他引:1  
利用区域自动站观测和NCAR/NCEP 1°×1°再分析资料,对比2012-2014年海河流域北系4次强降水过程成因,重点分析地形对强降水过程的影响。分析结果表明,4次强降水过程均属于低槽类暴雨,高空槽是影响流域北系强降水的主要影响系统,副热带高压、低层辐合系统对暴雨强度、位置及持续时间存在明显影响。此外,除能量及水汽的积聚外,地形对海河流域北系降水强度有明显增幅作用。风场与地形相配合的地形抬升是降雨增幅的动力因子。在水平方向上,呈"V"形分布的上升运动区,对应燕山山脉迎风坡坡度较大地区;在垂直方向上,地形强迫引起的低层上升运动中心与天气系统抬升引起的中高层上升运动中心逐渐合并加强。地形阻挡导致的水汽通量辐合也是迎风坡降雨增幅的重要因子,低层地形引起的水汽辐合明显强于中层天气系统引起的水汽辐合。  相似文献   
994.
2013年重庆秋季连阴雨期间暴雨过程对比分析   总被引:1,自引:0,他引:1  
2013年8月29日9月11日,重庆各地出现不同程度的连续降水天气,持续614天,降水日数多、日雨量大,连阴雨期间重庆出现两次区域性暴雨天气过程,为较严重连阴雨天气。利用NCEP 1°×1°的再分析资料及重庆地区逐日、逐时降水资料及雷达回波资料,对连阴雨天气期间两次暴雨过程进行对比分析。结果表明:此次连阴雨过程中欧亚地区中高纬500 hPa呈“两脊一槽”型,连阴雨过程中两次暴雨过程的500 hPa中高纬形势有所不同,但影响系统均为短波槽;两次过程都存在强大的水汽输送带,因副热带高压位置不同,暴雨区水汽来源也不同,一次来源于南海,一次来源于南海与孟加拉湾。近地层弱冷空气及中层暖湿气流的持续影响使连阴雨天气得以维持,两次暴雨过程产生前或产生时都伴有低层冷空气和中层暖湿气流的加强。由于“9·10”暴雨过程在暴雨区附近有明显的θse锋区,而“9·2”暴雨却不存在θse锋区,因此连阴雨过程中两次暴雨的降水性质不同。在对流并不特别强的暴雨过程中,雷达资料对影响系统强度的判断同样有指导意义。  相似文献   
995.
利用多普勒雷达、NECP再分析、常规观测和自动站降水资料,对2015年6月28—29日西南涡影响下发生在汉中盆地的暴雨天气进行分析,探究了西南涡的中小尺度系统特征。本次暴雨过程是在850hPa西南涡影响下,伴随700hPa低空急流和对流层顶的高空辐散共同作用下产生的。强降水区集中在西南涡东北部的佛坪和镇巴两站。雷达强度场上,在西南涡的东北部有超级单体结构发展,对应两个强降水中心,超级单体持续1.5~2h左右,最强回波强度达58dBz。速度场上,超级单体伴随有深厚中气旋,两次暴雨过程中,中气旋分别位于超级单体的西南侧和中心,并在镇巴有带状逆风区存在。分析表明,由西南涡所诱发的中尺度对流复合体(MCC)中包含的超级单体是造成佛坪70.9mm/h和镇巴32.1mm/h强暴雨的直接原因,汉中盆地暴雨的发展与减弱直接受到超级单体风暴强弱的控制。  相似文献   
996.
宋雯雯  李国平  王皓 《气象科技》2018,46(1):129-138
利用WRF模式、地基GPS资料以及常规气象观测资料,结合模式输出资料的高空间分辨率(10km)和GPS大气可降水量(GPS-PWV)资料的高时间分辨率(30min)的优点,对2008年7月20—22日四川盆地一次暴雨过程的水汽变化特征及各物理量与大气可降水量的关系进行综合分析。结果表明:此次降雨过程是由高原涡和西南涡共同作用引起,WRF模式能够较好地模拟出降雨落区和强度。GPS-PWV反映的大气可降水量增减趋势与WRF模拟的较为一致。水汽密度垂直分布反映了大气可降水量分布,水汽密度随高度增加而递减,降雨初期,水汽密度随高度减小迅速,降雨强盛时期,水汽密度随高度减小的速度减慢。水汽辐合使得水汽密度和大气可降水量增大,风的散度项与水汽通量散度的变化一致,而水汽平流项对水汽辐合贡献较小,水汽的辐合主要由风场辐合造成。  相似文献   
997.
形成2015年浙江省梅汛期暴雨的控制环流及梅雨锋结构   总被引:3,自引:3,他引:0  
本文利用NCEP/NCAR全球再分析逐日资料、地面观测资料和自动站降水资料,在分析了2015年浙江省梅汛期强降水特征、水汽输送和局地环流的基础上,从西南季风进退、副热带高压、南亚高压及西风带波动等方面对2015年形成梅汛期暴雨的控制环流进行了分析。结果表明:2015年整个浙江省梅汛期降水量较常年显著偏多,浙江中部地区降水量比历史同期偏多接近一倍。丰沛的水汽从孟加拉湾经中南半岛向东输送,与西太平洋副热带高压西侧的西南气流相合并,在梅雨锋南侧形成异常辐合,为强降水提供了水汽条件。这次持续强降水由三次强降水过程构成并由西风辐合型锋生引起。第二次强降水过程中大气强对流性不稳定利于梅雨锋上中尺度对流系统发展,导致强降水呈现明显的局地性。而第一次和第三次过程中梅雨带附近大气基本处于对流稳定或中性,以斜压性降水为主。在对流层低层,副高较常年偏东偏南,其西北侧西南暖湿气流与北侧冷空气交汇于浙江省,利于梅汛期强降水集中期的出现。在对流层上层的南亚高压较常年位置偏东,其北侧的西风急流强度偏强,东亚急流核入口区右侧的强辐散利于造成强烈的上升运动。在对流层中层,贝加尔湖阻高的东侧有明显的波动能量向东向南传播并在长江中下游积聚,利于浙江地区扰动的维持,形成持续稳定的梅雨锋和中低空切变线,造成梅雨强降水过程的持续。2015年春夏季热带中东太平洋海温正异常分布有利于梅汛期降水偏多的异常环流的形成。  相似文献   
998.
Warm-sector heavy rainfalls along the south China coast from April to June during 2009–2014 can be divided into two main types based on their low-level circulations. Type I is the southerly pattern with meridional convergence line at the west of the Pearl River estuary, which is formed by the convergence of southeasterly, southerly, and southwesterly flows. Type II is the southwesterly pattern with a latitudinal convergence line at the east of the Pearl River estuary, which is formed by the convergence of westerly and southwesterly flows. Statistics on 6-hourly heavy rainfall events indicates that, during the afore-mentioned 6 years, there were on average 73.2 occurrences of the southerly pattern and 50.3 occurrences of the southwesterly pattern per year. After the onset of summer monsoon in the South China Sea, the occurrence frequencies of both patterns increase remarkably. The synthetic diagnosis of pattern circulation shows that, at 500 hPa, for the southerly pattern, there is a broad warm high ridge, and a temperature ridge is behind the high ridge, which causes an obvious warm advection at the high ridge area. There is no frontal region. For the southwesterly pattern, the circulation is a weak trough with a temperature trough behind it. The position of the frontal region is near Yangzi River, and the south China coast is in the warm-sector of the frontal region. At the vertical cross-section of each of the two categories of heavy rainfall, there is a strong vertical motion center stretching to 400 hPa, where the convergence layer in the rainfall region is deep and with several vertical convergence centers overlapping one another. Both types of heavy rainfalls are with abundant water vapor, accompanied with deep convective instability energy layers, and with strong release of latent heat caused by condensation of water vapor. The release of latent heat leads to the warming-up and stretching of the air column, thus strengthens deep convergence and vertical velocity upward. There is a stronger latent heat-release in the southwesterly pattern than in the southerly pattern, while in the southerly pattern, the warm advection at middle and upper levels is stronger than the latent head release. To study the thermo-dynamic development mechanisms, weather research and forecasting model (WRF) numerical simulations are made and the results show that, in the two rainstorm regions, latent heat release warms up the air column, hence significantly increase the depth and strength of the vertical velocity. Moreover, the release of latent heat strengthens convergent circulation at lower levels and weakens divergent circulation at middle levels, whose influence can be as strong as 30%–50% of the wind circulation strength of the two types of the warm-sector heavy rainfall over the south China coast, and further enhances deep convection, promoting warm-sector storm development.  相似文献   
999.
江苏省秋冬季强浓雾发展的一些特征   总被引:3,自引:2,他引:1  
朱承瑛  朱毓颖  祖繁  严文莲  王宏斌 《气象》2018,44(9):1208-1219
运用江苏省72个国家基本气象观测站和339个交通气象观测站资料,对2013年12月1-9日、2015年10月23日、12月22日及2016年2月12日出现的四次全省性的以辐射降温为主的强浓雾和特强浓雾过程进行分析,筛选出194个站例,对江苏省秋、冬季强浓雾生消的气候特征、雾爆发增强的微物理特征及雾爆发性增长的触发因子进行分析。结果表明:(1)雾爆发性增强的本质是雾在很短时间内雾滴增多增大,雾含水量呈几个数量级的增加,从而导致雾区能见度快速下降。(2)夜间辐射降温突然增强、底层弱冷空气入侵、日出后蒸发量加大及湖陆风效应是雾爆发性增长的触发因子。  相似文献   
1000.
A record-breaking heavy rainfall event that occurred in Zhengzhou, Henan province during 19–21 July 2021 is simulated using the Weather Research and Forecasting Model, and the large-scale precipitation efficiency(LSPE) and cloud-microphysical precipitation efficiency(CMPE) of the rainfall are analyzed based on the model results. Then, the key physical factors that influenced LSPE and CMPE, and the possible mechanisms for the extreme rainfall over Zhengzhou are explored. Results show that water v...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号