首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3143篇
  免费   1059篇
  国内免费   1540篇
测绘学   673篇
大气科学   602篇
地球物理   1044篇
地质学   2038篇
海洋学   476篇
天文学   107篇
综合类   268篇
自然地理   534篇
  2024年   77篇
  2023年   257篇
  2022年   281篇
  2021年   250篇
  2020年   236篇
  2019年   273篇
  2018年   201篇
  2017年   220篇
  2016年   207篇
  2015年   246篇
  2014年   318篇
  2013年   254篇
  2012年   273篇
  2011年   280篇
  2010年   277篇
  2009年   256篇
  2008年   206篇
  2007年   186篇
  2006年   158篇
  2005年   149篇
  2004年   119篇
  2003年   135篇
  2002年   101篇
  2001年   107篇
  2000年   72篇
  1999年   76篇
  1998年   61篇
  1997年   70篇
  1996年   60篇
  1995年   59篇
  1994年   55篇
  1993年   35篇
  1992年   29篇
  1991年   27篇
  1990年   19篇
  1989年   27篇
  1988年   11篇
  1987年   8篇
  1986年   9篇
  1985年   6篇
  1984年   7篇
  1983年   9篇
  1982年   7篇
  1981年   10篇
  1980年   4篇
  1965年   2篇
  1963年   2篇
  1962年   3篇
  1957年   3篇
  1954年   2篇
排序方式: 共有5742条查询结果,搜索用时 31 毫秒
51.
岩石断裂作用的复杂性和混沌动力学   总被引:1,自引:0,他引:1  
断裂是一个复杂的动力学体系,受到岩石结构、反应、流体迁移、应力、岩石变形和力学等多种地质因素和过程的耦合控制。本文建立了断裂体系的反应-输运-力学耦合动力学模型并编制了模拟程序。以湖南水口山矿区为例,通过动力学模拟表明不同地层岩性的断裂渗透率大小和演化特征存在显著差异,断裂作用促使岩石渗透率的空间非均匀性增强,从而有利于流体的局部汇聚和矿体的形成。断裂中压力随时间呈现出非周期振荡变化,反映了断裂演化的混沌特征。  相似文献   
52.
太阳耀斑的GPS监测方法及实例分析   总被引:3,自引:1,他引:3  
利用GPS伪距与载波相位联合数据处理的方法,分析了2000年7月14日太阳耀斑爆发期间,武汉、北京、乌鲁木齐GPS观测数据得到的电离层TEC,提出了利用多项式拟合计算由耀斑引起的电离层TEC增加量的方法。  相似文献   
53.
介绍了在利用GPS观测电离层TEC和反演上电离层剖面过程中,如何选择最适宜GPS星,如何计算卫星有关参数,如何计算卫星到测站间斜向TEC等问题,最后给出了一个剖面反演实例。  相似文献   
54.
利用GPS组合观测值建立区域电离层模型研究   总被引:4,自引:1,他引:4  
介绍了VTEC模型的基本原理,给出了三种利用载波相位观测值改善伪距观测值精度的方法,利用三种组合观测值分别建立VTEC模型,并与利用伪距观测值计算的VTEC模型的精度进行比较。  相似文献   
55.
严邦良 《大气科学》2003,27(3):354-368
建立一个中等复杂程度的海-气耦合模式研究东、西边界反射,纬向平流项-u′(δ)(T+T′)/(δ)x在ENSO循环位相转换中的作用及东、西边界反射与纬向异常流(u′) 符号改变的关系.结果得到:u′超前Nio3区SSTA位相转变的原因是东、西边界反射造成的.Sverdrup 平衡时所产生的地转流(ur)与东、西边界反射所产生的地转流(ur)的方向在大部分时间里是相反的,同时ur与风应力强迫之间大约有9个月的滞后时间(Kelvin波从180°E出发经东边界反射产生的Rossby波到达180°E时间).在模式ENSO事件消亡过程中的某一时刻以后,边界反射产生的调整过程变为主要过程,u′主要由ur来决定,这样就造成了u′的反向先于Nio区SSTA的反向.它实际上是海洋的调整过程与风应力强迫之间滞后关系的一种反映.敏感性数值试验表明,取消东边界反射,耦合模式能够模拟ENSO循环,但其周期比控制试验的周期短一年(3年).取消-u′(δ)(T+T′)/(δ)x,耦合模式能够模拟ENSO循环,但其周期比控制试验的周期长2年(6年).  相似文献   
56.
VLBI观测的电离层延迟改正模型研究   总被引:2,自引:1,他引:2  
电离层是大气层中的一个电离区域,高度范围大约在60-1000km。电磁波信号穿越电离层时其传播速度会发生变化,传播路径也会略微发生弯曲,从而使信号的传播时间乘以在真空中的光速不等于信号源至测站的几何距离。对VLBI观测来讲,电离层引起的差异可达近百米百米。文中从电磁波的传播原理出发,讨论了信号传播速度和传播路径变化引起的VLBI观测延迟;对目前采用的各种电离层延迟模型进行了分析总结;并指出单频率VLBI观测应顾及高阶项和路径弯曲的影响或使用区域性电离层延迟改正模型。  相似文献   
57.
评估了中国科学院大气物理研究所大气科学和地球流体动力学数值模拟国家重点实验室海洋环流模式L30T63和海气耦合模式FGCM 0模拟的热带太平洋年平均状态 ,资料取自L30T63由观测的大气强迫驱动的Control试验、由NCARCCM3大气强迫驱动的Spinup试验、以及相应的海气耦合模式FGCM 0。主要的结论是 :( 1 )在“准确”的海表强迫下 ,Control模拟的海面温度和温跃层与观测结果相当接近 ,模式的固有误差是赤道冷舌过分西伸和东南太平洋温跃层偏浅。 ( 2 )Spinup能模拟出合理的热带太平洋上层海洋环流 ,但存在两个问题 ,即 :暖池区海面温度显著偏高、沿赤道的梯度过大 ;赤道温跃层偏浅、东西向坡度偏小 ,它们分别与CCM3提供的海表短波辐射通量和风应力的系统误差有关。这两个问题很可能是海气耦合模式FGCM 0运行初期误差迅速发展的重要原因。 ( 3)FGCM 0模拟的赤道暖池区上层 1 0 0m的平均温度比观测低 3℃。分析表明FGCM 0夸大了暖池区海洋动力过程的降温作用 ,使得模拟的“暖池”在一定程度上具有冷舌的属性。FGCM 0模拟的热带南太平洋温跃层比观测结果偏浅数十米到 1 0 0m ,以致赤道两侧的上层海洋温度分布趋于对称 ,成为“doubleITCZ”现象在上层海洋中的表现。风应力旋度的系统误差和垂直混合随深度衰减过快  相似文献   
58.
文中运用损伤力学研究方法 ,提出孕震过程中引起地壳破坏的应力 -损伤耦合效应。利用应变等效性假设 ,推导了地壳体的应力 -损伤耦合效应与地表重力变化之间的理论关系。根据岩石力学实验的不同加载途径 ,模拟了 1976年唐山 7 8级地震和 2 0 0 1年昆仑山口西 8 1级地震重力演化的不同特征 ,结果与实际情况符合较好 ,表明应力 -损伤耦合效应可以作为地震前地壳重力变化的一种物理解释  相似文献   
59.
用北半球陆地上48个地面电离层垂测站资料,以及国际参考电离层IRI 90模式,考察1985年1月6~7日F2层电子密度最大值日变化的纬度剖面和经度效应. 结果表明,在亚洲地区的20°N~30°N内,F2层赤道异常“喷泉效应”产生的NmF2“北驼峰”最高,其最大值出现在中午,或稍迟时间. 30°N ~50°N区域内,NmF2的白天峰值幅度逐渐下降,峰值时间移至午前约10:00 LT. 更高纬度(50°N~62°N )台站上,中午前后NmF2出现双峰,傍晚有谷值,夜间又再次抬升. 欧、美地区的低纬台站很少,但借助IRI 90模式分析可发现,在270°E经圈上,“喷泉效应”造成的“北驼峰”幅度最小,而且随纬度增大时,NmF2白天幅度下降也不明显,即纬度剖面的经度效应非常显著. 对中国、日本地区台站资料的小范围经度差异分析表明,在驼峰区的90°E~140°E内,各站NmF2无明显差别;但在中纬地区30°N~50°N内,中国西部上空NmF2白天变化幅度较大,且较为陡直,而中国东部和日本台站上空则相对平缓.  相似文献   
60.
通过求解中性大气Navier Stokes动量方程建立了一个时变的三维风场理论模式,利用目前新版的中性大气模式NRLMSISE 00及国际电离层参考模式IRI2000作为输入参数给出热层风场. 基于该模式,计算得到中等太阳活动年磁静日风场的变化形态及其受电场和离子曳力的影响. 同时,将Navier Stokes动量方程作不同形式的简化,并利用简化模式与本文的模式计算结果的对比,分析中性大气Navier Stokes动量方程中黏性项以及非线性项(U·Δ)U的作用. 结果表明,本文所建立伪三维风场模式给出的结果更为合理,而简化模式在某些地区尤其在低纬和赤道区不适用,黏性项及非线性项的作用不可忽略. 本文所建立的风场模式将对研究电离层动力学过程、电离层与热层的耦合过程以及空间天气学研究都有着重要意义.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号