首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   248篇
  免费   11篇
  国内免费   10篇
地球物理   73篇
地质学   149篇
天文学   7篇
综合类   4篇
自然地理   36篇
  2022年   1篇
  2021年   4篇
  2020年   4篇
  2019年   8篇
  2018年   6篇
  2017年   9篇
  2016年   7篇
  2015年   15篇
  2014年   13篇
  2013年   14篇
  2012年   4篇
  2011年   7篇
  2010年   4篇
  2009年   21篇
  2008年   24篇
  2007年   15篇
  2006年   17篇
  2005年   33篇
  2004年   6篇
  2003年   8篇
  2002年   14篇
  2001年   5篇
  2000年   4篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1995年   2篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   3篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
排序方式: 共有269条查询结果,搜索用时 15 毫秒
181.
On June 23, 2001, an M8.4 earthquake that originated in southern Peru triggered the partial collapse of the Chislluma bofedal (water meadows) in the Altiplano (high-altitude plateau) of northern Chile. The seismic waves evidently produced the liquefaction of the bofedal and caused its partial collapse generating a flow. The flow deposit was mainly made of long-fiber grass and water, with minor amounts of clastic material. It traveled more than 14 km downstream at a peak velocity of 50 km/h. It destroyed the water meadows and killed more than 20 llamas. Slurry flows caused by meadow liquefaction are a previously unrecognized seismic-induced geological hazard for high-altitude plateau areas such as the Altiplano.  相似文献   
182.
Upper crustal strike-slip duplexes provide an excellent opportunity to address the fundamental question of fault zone development and strain partitioning in an evolving system. Detailed field mapping of the Mesozoic Atacama fault system in the Coastal Cordillera of Northern Chile documents the progressive development of second- and third-order faults forming a duplex at a dilational jog between two overstepping master faults: the sinistral strike-slip, NNW-striking, Jorgillo and Bolfin faults. These are constituted by a meter-wide core of foliated S-C ultracataclasite and cataclasite, flanked by a damage zone of protocataclasite, splay faults and veins. Lateral separation of markers along master faults is on the order of a few kilometers. Second-order, NW-striking, oblique-slip subsidiary fault zones do not show foliated ultracataclasite; lateral sinistral separations are in the range of  10 to 200 m with a relatively minor normal dip-slip component. In turn, third-order, east–west striking normal faults exhibit centimetric displacement. Oblique-slip (sinistral–normal) fault zones located at the southern termination of the Bolfin fault form a well-developed imbricate fan structure. They exhibit a relatively simple architecture of extensional and extensional-shear fractures bound by low displacement shear fractures. Kinematic analysis of fault slip data from mesoscopic faults within the duplex area, document that the NW-striking and the EW-striking faults accommodate transtension and extension, respectively. Examination of master and subsidiary faults of the duplex indicates a strong correlation between total displacement and internal fault structure. Faults started from arrays of en echelon extensional/extensional-shear fractures that then coalesced into throughgoing strike-slip faults. Further displacement leads to the formation of discrete bands of cataclasite and ultracataclasite that take up a significant part of the total displacement. We interpret that the duplex formed by progressive linkage of horsetail-like structures at the southern tip of the Bolfin fault that joined splay faults coming from the Jorgillo and Coloso faults. The geometry and kinematics of faults is compared with that observed in analog models to gain an insight into the kinematic processes leading to complex strike-slip fault zones in the upper crust.  相似文献   
183.
The Iquitos Arch corresponds to a broad topographic high in the Western Amazonia. Morphostructural and geophysical data and flexural modeling show that the Iquitos Arch is the present-day forebulge of the Northwestern Amazonian foreland basin. A detailed tectono-sedimentary study of the Neogene and Quaternary deposits of the Iquitos area has been carried out in order to circumscribe the timing of the forebulge uplift and its environmental consequences. The Neogene and Quaternary sedimentary succession of the Iquitos Arch consists of six formations that evolved from tidal to fluvial environments. The first three formations exhibit Late Miocene gliding features and synsedimentary normal faults. Such soft-sediment deformations bear witness to tectonic activity ascribed to the growth of the forebulge. Regional erosive surfaces that separate the Neogene and Quaternary formations recorded the progressive forebulge emersion and the evolution of Amazonian drainage system. This uplift is related to an increase in tectonic activity within the Andes, which has provoked the eastern propagation of the orogenic wedge and caused an orogenic loading stage in the Amazonian foreland basin system. The emersion of the forebulge induced the retreat of the Pebas “marine megalake” nearby the Iquitos area and consequently caused important environmental changes in the Amazonian basin. From the end of the Late Miocene to the Pliocene, the forebulge acted as a barrier inducing the deposition of fluvial deposits in the forebulge depozone and the deposition of the “White Sand” deposits in the backbulge depozone. Since about 6 Ma, the forebulge is incised and crossed over by the modern Amazon River. The Iquitos forebulge is still growing as shown by the faulted Holocene terrace deposits.  相似文献   
184.
The western cordilleras of the Northern Andes (north of 5°S) are constructed from allochthonous terranes floored by oceanic crust. We present 40Ar/39Ar and fission-track data from the Cordillera Occidental and Amotape Complex of Ecuador that probably constrain the time of terrane collision and post-accretionary tectonism in the western Andes. The data record cooling rates of 80–2 °C/my from temperatures of 540 °C, during 85 to 60 Ma, in a highly tectonised mélange (Pujilí unit) at the continent–ocean suture and in the northern Amotape Complex. The rates were highest during 85–80 Ma and decelerated towards 60 Ma. Cooling was a consequence of exhumation of the continental margin, which probably occurred in response to the accretion of the presently juxtaposing Pallatanga Terrane. The northern Amotape Complex and the Pujilí unit may have formed part of a single, regional scale, tectonic mélange that started to develop at ~85 Ma, part of which currently comprises the basement of the Interandean Depression. Cooling and rotation in the allochthonous, continental, Amotape Complex and along parts of the continent–ocean suture during 43–29 Ma, record the second accretionary phase, during which the Macuchi Island Arc system collided with the Pallatanga Terrane. Distinct periods of regional scale cooling in the Cordillera Occidental at 13 and 9 Ma were synchronous with exhumation in the Cordillera Real and were probably driven by the collision of the Carnegie Ridge with the Ecuador Trench. Finally, late Miocene–Pliocene reactivation of the Chimbo–Toachi Shear Zone was coincident with the formation of the oldest basins in the Interandean Depression and probably formed part of a transcurrent or thrust system that was responsible for the inception and subsequent growth of the valley since 6 Ma.  相似文献   
185.
We combine geological and geophysical data to develop a generalized model for the lithospheric evolution of the central Andean plateau between 18° and 20° S from Late Cretaceous to present. By integrating geophysical results of upper mantle structure, crustal thickness, and composition with recently published structural, stratigraphic, and thermochronologic data, we emphasize the importance of both the crust and upper mantle in the evolution of the central Andean plateau. Four key steps in the evolution of the Andean plateau are as follows. 1) Initiation of mountain building by 70 Ma suggested by the associated foreland basin depositional history. 2) Eastward jump of a narrow, early fold–thrust belt at 40 Ma through the eastward propagation of a 200–400-km-long basement thrust sheet. 3) Continued shortening within the Eastern Cordillera from 40 to 15 Ma, which thickened the crust and mantle and established the eastern boundary of the modern central Andean plateau. Removal of excess mantle through lithospheric delamination at the Eastern Cordillera–Altiplano boundary during the early Miocene appears necessary to accommodate underthrusting of the Brazilian shield. Replacement of mantle lithosphere by hot asthenosphere may have provided the heat source for a pulse of mafic volcanism in the Eastern Cordillera and Altiplano at 24–23 Ma, and further volcanism recorded by 12–7 Ma crustal ignimbrites. 4) After 20 Ma, deformation waned in the Eastern Cordillera and Interandean zone and began to be transferred into the Subandean zone. Long-term rates of shortening in the fold–thrust belt indicate that the average shortening rate has remained fairly constant (8–10 mm/year) through time with possible slowing (5–7 mm/year) in the last 15–20 myr. We suggest that Cenozoic deformation within the mantle lithosphere has been focused at the Eastern Cordillera–Altiplano boundary where the mantle most likely continues to be removed through piecemeal delamination.  相似文献   
186.
An autochthonous geological model for the eastern Andes of Ecuador   总被引:3,自引:1,他引:3  
We describe a traverse across the Cordillera Real and sub-Andean Zone of Ecuador, poorly known areas with very little detailed mapping and very little age control. The spine of the Cordillera comprises deeply eroded Triassic and Jurassic plutons, the roots of a major arc, emplaced into probable Palaeozoic pelites and metamorphosed volcanic rocks. The W flank comprises a Jurassic (?) submarine basaltic–andesitic volcanic sequence, which grades up into mixed Jurassic/Cretaceous volcanic and sedimentary rocks of the Inter-Andean Valley. The sub-Andean Zone, on the E flank of the Cordillera, comprises a newly recognized Cretaceous basin of cleaved mudrocks, quartz arenites and limestones. East of the syndepositional Cosanga Fault, the Cretaceous basin thins into a condensed sequence that is indistinguishable from the rocks of the adjacent hydrocarbon-bearing Oriente Basin. The principal penetrative deformation of the Cordillera Real was probably latest Cretaceous/Palaeocene. It telescoped the magmatic belts, but shortening was largely partitioned into the pelites between plutons. The plutons suffered inhomogenous deformation; some portions completely escaped tectonism. The pelites conserve two foliations. The earliest comprises slaty cleavage formed under low- or sub-greenschist conditions. The later is a strong schistosity defined by new mica growth. It largely transposed and obliterated the first. Both foliations may have developed during a single progressive deformation. We find inappropriate recent terrane models for the Cordillera Real and sub-Andean Zone of Ecuador. Instead we find remarkable similarities from one side of the Cordillera to the other, including a common structural history. In place of sutures, we find mostly intrusive contacts between major plutons and pelites. Triassic to Cretaceous events occurred on the autochthonous western edge of the Archaean Guyana Shield. The latest Cretaceous–Paleocene deformation is interpreted as the progressive collision of an oceanic terrane(s) with the South American continent. Young fault movements have subsequently juxtaposed different structural levels through the Cordillera Real orogen.  相似文献   
187.
Miguel Muoz 《Tectonophysics》2005,395(1-2):41-65
The Wadati–Benioff Zone (WBZ) is an approximate plane defined by earthquakes hypocentres observed in convergent plate boundaries and that usually dips at angles greater than 30°. In some areas of the Andes, where there are gaps in volcanic activity, and where heat flow is abnormally low, this plane in most studies has nearly horizontal dip at a depth of about 75–100 km, and it has been associated to flat subduction of the oceanic lithosphere. This situation has been taken as the present-day analogue of the Laramide orogeny of western North America for which a ‘flat-slab’ episode has been proposed in the past years. In this work, the observed low heat flow in areas of the Andes is assumed to be due to low radiogenic heat generation in geologically old and allochthonous terranes constituting large regions of western South America. On the basis of geotherms obtained for areas of Ecuador, Peru, Chile and Argentina, and of rheological results describing the partition between brittle and ductile regimes, the seismic activity observed both in the lower crust and at depths of about 75–100 km is thoroughly explained. At these depths, earthquakes occur within the subcontinental upper mantle, and then there is no flat WBZ associated to subduction of the oceanic lithosphere. There is evidence from recent seismological observations that the real WBZ lies not horizontally and deeper in the tectonosphere.  相似文献   
188.
189.
The drainage basin of the Deleg River (88 km2), located in the southern Ecuadorian Andes, was studied to assess the geomorphic and hydrologic response of a fluvial system to human-induced environmental change in its contributing area. Historical data on land use, channel morphology and sedimentology were collected, based on a spatial analysis of aerial photographs (1963–1995) and a field survey (2002). Analysis of channel cross-sectional profiles and sedimentological data revealed a major change in morphology and sedimentology of the Deleg River during the past four decades: (i) the active river channel narrowed by over 45%, (ii) the riverbed incised on average by over 1.0 m and (iii) the median grain size of the bed surface decreased from 13.2 cm to 4.7 cm. The spatial pattern of land cover within the Deleg catchment also changed considerably: highly degraded agricultural land in the low-lying areas was abandoned and partially afforested for timber and wood production, whereas secondary upland forest was increasingly cleared for expansion of cropland and pastures. Notwithstanding large changes in the spatial organization of land use within the catchment, the overall land use did not change significantly during the past four decades. This suggests that the response of the Deleg River to land-use change not only depends on the overall land-use change, but also on the spatial pattern of land-use/cover change within the catchment. Although forestation and regeneration of bare gully slopes and floors throughout the catchment only represented a minor part of the total land-use change, these land-use/cover changes had a major impact on the hydrological and sediment connectivity in the landscape.  相似文献   
190.
This petrologic analysis of the Negra Muerta Volcanic Complex (NMVC) contributes to understanding the magmatic evolution of eruptive centres associated with prominent NW-striking fault zones in the southern Central Andes. Specifically, the geochemical characteristics and magmatic evolution of the two eruptive episodes of this Complex are analysed. The first one occurred as an explosive eruption at 9 Ma and is represented by a strongly welded, fiamme-rich, andesitic to dacitic ignimbrite deposit. The second commenced with an eruption of a rhyolitic ignimbrite at 7.6 Ma followed by effusive discharge of hybrid lavas at 7.3 Ma and by emplacement of andesitic to rhyodacitic dykes and domes. Both explosive and effusive eruptions of the second episode occurred within a short time span, but geochemical interpretations permit consideration of the existence of different magmas interacting in the same magma chamber. Our model involves an andesitic recharge into a partially cooled rhyolitic magma chamber, pressurising the magmatic system and triggering explosive eruption of rhyolitic magma. Chemical or mechanical evidence for interaction between the rhyolitic and andesitic magma in the initial stages are not obvious because of their difference in composition, which could have been strong enough to inhibit the interaction between the two magmas. After the initial explosive stages of the eruption at 7.6 Ma, the magma chamber become more depressurised and the most mafic magma settled in compositional layers by fractional crystallisation. Restricted hybridisation occurred and was effective between adjacent and thermally equivalent layers close to the top of the magma chamber. At 7.3 Ma, increments of caldera formation were accompanied by effusive discharge of hybrid lavas through radially disposed dykes whereby andesitic magma gained in importance toward the end of this effusive episode in the central portion of the caldera. Assimilation during turbulent ascent (ATA) is invoked to explain a conspicuous reversed isotopic signature (87Sr/86Sr and 143Nd/144Nd) in the entire volcanic series. Therefore, the 7.6 to 7.3 Ma volcanic rocks of the NMVC resulted from synchronous and mutually interacting petrological processes such as recharge, fractional crystallization, hybridisation, and Assimilation during Turbulent Ascent (ATA).Geochemical characteristics of both volcanic episodes show diverse type and/or depth in the sources and variable influence of upper crustal processes, and indicate a recurrence in the magma-forming conditions. Similarly, other minor volcanic centres in the transversal volcanic belts of the Central Andes repeated their geochemical signatures throughout the Miocene.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号