首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   248篇
  免费   11篇
  国内免费   10篇
地球物理   73篇
地质学   149篇
天文学   7篇
综合类   4篇
自然地理   36篇
  2022年   1篇
  2021年   4篇
  2020年   4篇
  2019年   8篇
  2018年   6篇
  2017年   9篇
  2016年   7篇
  2015年   15篇
  2014年   13篇
  2013年   14篇
  2012年   4篇
  2011年   7篇
  2010年   4篇
  2009年   21篇
  2008年   24篇
  2007年   15篇
  2006年   17篇
  2005年   33篇
  2004年   6篇
  2003年   8篇
  2002年   14篇
  2001年   5篇
  2000年   4篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1995年   2篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   3篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
排序方式: 共有269条查询结果,搜索用时 15 毫秒
191.
Equatorial high mountain lakes are a special type of lake occurring mainly in the South American Andes as well as in Central Africa and Asia. They occur at altitudes of a few thousand meters above sea level and are cold-water lakes (<20 °C). Relatively little is known about them. A long-term limnological study was therefore undertaken at Lake Lago San Pablo, Ecuador to analyze the basic limnological processes of this lake, which has a tendency for eutrophication. Lago San Pablo is spread over an area of 668 hectares, has a maximum depth of 35 m, and is located 2660 m above sea level. Its thermal stratification is a monomictic one, with only 1–2 °C difference between the epi- and hypolimnion; overturn is achieved by strong winds during the dry summer period. The stratification phase is characterized by an oxygen deficit in the lower part of the hypolimnion. Besides, strong convective currents occur due to nocturnal cooling, and partial lake mixing was observed during the nocturnal period. This type of lake mixing is called atelomixis, which is characterized by the partial mixing of isolated layers (difference in temperature or ionic content) during stratification. The nutrient level of the lake is quite high: mean Ptotal concentration = 0.22 mg/l, mean Ntotal = 1.05 mg/l, soluble reactive phosphorus (SRP) > 0.01 mg/l, and soluble inorganic nitrogen > 0.2 mg/l. Nitrogen and phosphorus are available in the epilimnion all year round (Nsol. inorg·. = 0.3 to 1.7 mg/l N, SRP = 0.04 to 0.63 mg/l P). The N/P ratio is sometimes > 14, sometimes < 10, indicating a variability of the limiting nutrient factor. Considering the nutrient level, the phytoplankton biomass is quite low (about 4,000 cells per ml on average; maximum cell number: 13,000 in 1998 and 10,000 in 1999). The mean epilimnic chlorophyll content (Chl a was 10 mg/l in 1998 and 11 g/l in 1999, and the maximum Chl a content was 16 and 22 g/l in 1998 and 1999, respectively.Phytoplankton production can be limited by nutrients, mainly nitrogen, but convective currents can also cause a significant loss of biomass. The lake's euphotic zone is smaller than its epilimnic zone, indicating that light radiation is limiting in the deeper water body, this is caused by a weak thermocline due to destratification by nocturnal cooling, the atelomixis.  相似文献   
192.
Holocene yardangs in volcanic terrains in the southern Andes,Argentina   总被引:2,自引:0,他引:2  
Yardangs of different sizes were developed in the Payun Matru Volcanic Field, a semiarid area east of the southern Andes mountains. Yardangs from volcanic terrains have not been described previously from Earth, although studies from Mars interpreted linear ridges found by Mariner and Viking images as yardangs. The Payun Matru Volcanic Field is an extensive plateau at 2000 m a.s.l. covered by basaltic lava and ignimbrite flows. Strong westerly winds affect the extensive plateau. Micro‐ and mesoyardangs are formed on the ignimbrite rock blanket, and macroforms or megayardangs, several kilometres in length, are developed in the basaltic lava flows as long parallel troughs. They all have a distinctive 320° azimuth, which is the prevailing wind direction. No yardang features are noted in the more recent lava flows, younger than 1000 years, indicating that their formation needed a longer time or they developed in earlier periods with stronger winds. The yardang development is explained by the strong unidirectional winds, the poor vegetational cover due to the aridity of the region, the available quartz sand and volcanic ash particles as abrasive agents, and the volcanic lithology texture and flow structure. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
193.
Recent results from Global Positioning System (GPS) measurements show deformation along the coast of Ecuador and Colombia that can be linked to the rupture zone of the earthquake in 1979. A 3D elastic boundary element model is used to simulate crustal deformation observed by GPS campaigns in 1991, 1994, 1996, and 1998. Deformation in Ecuador can be explained best by 50% apparent locking on the subduction interface. Although there have not been any historic large earthquakes (Mw>7) south of the 1906 earthquake rupture zone, 50% apparent elastic locking is necessary to model the deformation observed there. In Colombia, only 30% apparent elastic locking is occurring along the subduction interface in the 1979 earthquake rupture zone (Mw 8.2), and no elastic locking is necessary to explain the crustal deformation observed at two GPS sites north of there. There is no evidence from seismicity or plate geometry that plate coupling on the subduction zone is reduced in Colombia. However, simple viscoelastic models suggest that the apparent reduction in elastic locking can be explained entirely by the response of a viscous upper mantle to the 1979 earthquake. These results suggest that elastic strain accumulation is occurring evenly throughout the study area, but postseismic relaxation masks the true total strain rate.  相似文献   
194.
A quantitative analysis of the various parameters influencing the thermal regime in orogenic belts and related foredeeps shows that (i) the increasing heat flow in internal zones is mainly due to the thickening of radiogenic layers, although there is no simple proportionality between crustal thickness and heat flow signal at large scale; (ii) in external zones, where the horizontal strain rate is large (such as in the Bolivian Andes), surface processes can be of first order within the first kilometers of the crust. Hence, they induce a large scatter in the thermal data which are acquired at shallow depths. The deep thermal regime can be restored only by a quantitative assessment of these parameters. Active erosion (respectively sedimentation) can increase (resp. reduce) the heat flow by a factor of 2 in the uppermost kilometers. The effects of fluid circulation percolating at depth can also generate significant local disturbances. Other processes such as heat advection during thrusting, surface morphology and climate change have a minor influence in most settings, compared to the aforesaid effects.In the Bolivian Sub Andean Zone, between 18°S and 22°S, the very active deformation enhances the surface thermal perturbations (particularly erosion and sedimentation) and disturb the thermal field. The analysis of these data accounting for the kinematics of the belt allows the lateral variations of the thermal regime at various scales to be assessed. A slight eastward increase in the thermal regime towards the Chaco plain is evidenced as well as towards the Boomerang area, as the Mesozoic and Cenozoic sedimentary cover gets thinner.  相似文献   
195.
New UPb zircon crystallization ages and 40Ar/39Ar cooling ages from the Colombian Andes confirm the existence of rocks metamorphosed during the Orinoquian Orogenic Event (ca. 1.0 Ga) of northern South America. εNd (t = 1.1 Ga) for these rocks range from −3.9 to +0.91, which is interpreted as a mixture of Late Archean-Early Proterozoic crust with juvenile material produced during the 1.1 Ga orogenic event. The Colombian Grenville age rocks are part of a much longer metamorphic pericratonal belt, sporadically exposed along the Andes, in western-central Peru, southern Bolivia and northern Argentina. In addition, Nd model (TDM) ages for the Colombian rocks range from 1.9 to 1.45 Ga, similar to those obtained in the Grenville Province of the eastern U.S. and in the Mexican basement, placing constraints on Late Proterozoic-Early Paleozoic paleocontinental reconstructions.  相似文献   
196.
ABSTRACT. Tropical montane forests are known for their ecological importance. Most montane forests in Ecuador have been converted to agriculture, and those that remain are concentrated on the eastern cordillera. Understanding of land‐use‐land‐cover change in this ecological zone is inadequate. Using remote sensing (Landsat tm, spot ) and fieldwork, we document land‐use‐land‐cover change in two watersheds on Ecuador's eastern cordillera (Cañar Province). During the 1990s the region experienced a 0.58 percent annual rate of deforestation, but two areas within it show active signs of re/afforestation. Although conversion of forest to pasture for cattle grazing continues, human migration to the United States is likely to affect the trajectory of future land‐use‐land‐cover change.  相似文献   
197.
The Granada ignimbrite, an Upper Miocene volcanic unit from the northern Puna, previously has been interpreted as an extensive ignimbrite (>2300 km2) associated with eruptions from the Vilama caldera (trap-door event). On the basis of new data, we revise its correlation and redefine the unit as a compound, high aspect ratio ignimbrite, erupted at approximately 9.8 Ma. Calculated volumes (100 km3) are only moderate in comparison with other large volume (>1000 km3) ignimbrites that erupted approximately 2–6 m.y. later in the region (e.g. Vilama, Panizos, Atana). Six new volcanic units are recognized from sequences previously correlated with Granada (only one sourced from the same center). Consequently, the area ascribed to the Granada ignimbrite is substantially reduced (630 km2), and links to the Vilama caldera are not supported. Transport directions suggest the volcanic source for the Granada ignimbrite corresponds to vents buried under younger (7.9–5 Ma) volcanic rocks of the Abra Granada volcanic complex. Episodes of caldera collapse at some stage of eruption are likely, though their nature and timing cannot be defined from available data. The eruption of the Granada ignimbrite marks the onset of a phase of large volume (caldera-sourced) volcanism in the northern Puna.  相似文献   
198.
The development and evolution of the Tilcara alluvial fan, in the Quebrada de Humahuaca (Andean Eastern Cordillera, NW Argentina), has been analysed by using geomorphological mapping techniques, sedimentological characterisation of the deposits and OSL chronological methods. It is a complex segmented alluvial fan made up of five evolutionary stages (units Qf1, Qf2, Qf3, Qf4 and Qf5) developed under arid climatic environments as well as compressive tectonic conditions. Segmentation processes, including aggradation/entrenchment cycles and changes in the location of the depositional lobe, are mainly controlled by climatic and/or tectonic changes as well as channel piracy processes in the drainage system. Alluvial fan deposits include debris flows, sheet flows and braided channel facies associated with high water discharge events in an arid environment. The best mean OSL age estimated for stage Qf2 is 84.5 ± 7 ka BP. In addition, a thrust fault affecting these deposits has been recognized and, as a consequence, the compressive tectonics must date from the Upper Pleistocene in this area of the Andean Eastern Cordillera.  相似文献   
199.
Changes in the sedimentologic and stratigraphic characteristics of the coal-bearing middle Oligocene–late Miocene siliciclastic Amagá Formation, northwestern Colombia, reflect major fluctuations in the stratigraphic base level within the Amagá Basin, which paralleled three major stages of evolution of the middle Cenozoic Andean Orogeny. These stages, which are also traceable by the changes in the compositional modes of sandstones, controlled the occurrence of important coal deposits. The initial stage of evolution of the Amagá Basin was related to the initial uplift of the Central Cordillera of Colombia around 25 Ma, which promoted moderate subsidence rates and high rates of sediment supply into the basin. This allowed the development of aggradational braided rivers and widespread channel amalgamation resulting in poor preservation of both, low energy facies and geomorphic elements. The presence of poorly preserved Alfisols within the scarce flood plains and the absence of swamp deposits suggest arid climate during this stage. The compositional modes of sandstones suggest sediment supply from uplifted basement-cored blocks. The second stage of evolution was related to the late Oligocene eastward migration of the Pre-Andean tholeitic magmatic arc from the Western Cordillera towards the Cauca depression. This generated extensional movements along the Amagá Basin, enhancing the subsidence and increasing the accommodation space along the basin. As a result of the enhanced subsidence rates, meandering rivers developed, allowing the formation of extensive swamps deposits (currently coal beds). The excellent preservation of Entisols and Alfisols within the flood plain deposits suggests rapid channels migration and a humid climate during deposition. Moderate to highly mature channel sandstones support this contention, and point out the Central Cordillera of Colombia as the main source of sediment. Enhanced subsidence during this stage also prevented channels amalgamation and promoted both, high preservation of geomorphic elements and high diversity of sedimentary facies. This resulted in the most symmetric stratigraphic cycles of the entire Amagá Formation. The final stage of evolution of the Amagá Basin was related to the early stage of development of the late Miocene northwestern Andes tholeitic volcanism (from 10 to 8 Ma). The extensive thrusting and folding associated to this volcanism reduced the subsidence rates along the basin and thus the accommodation space. This permitted the development of highly aggradational braided rivers and promoted channels amalgamation. Little preservation of low energy facies, poor preservation of the geomorphic elements and a complete obliteration of important swamp deposits (coal beds) within the basin are reflected by the most asymmetric stratigraphic cycles of the whole formation. The presence of greenish/reddish flood plain deposits and Alfisols suggests a dry climate during this depositional stage. The presence of channel sandstones with high contents of volcanic rock fragments supports a dry climate, and suggests an incipient phase of the Combia tholeiitic magmatism present during deposition of the Amagá Formation. The subsequent eastward migration of the NW Andes magmatic arc (after 8 Ma) may have produced basin inversion and suppressed deposition along the Amagá Basin.  相似文献   
200.
The basement in the ‘Altiplano’ high plateau of the Andes of northern Chile mostly consists of late Paleozoic to Early Triassic felsic igneous rocks (Collahuasi Group) that were emplaced and extruded along the western margin of the Gondwana supercontinent. This igneous suite crops out in the Collahuasi area and forms the backbone of most of the high Andes from latitude 20° to 22°S. Rocks of the Collahuasi Group and correlative formations form an extensive belt of volcanic and subvolcanic rocks throughout the main Andes of Chile, the Frontal Cordillera of Argentina (Choiyoi Group or Choiyoi Granite-Rhyolite Province), and the Eastern Cordillera of Peru.Thirteen new SHRIMP U–Pb zircon ages from the Collahuasi area document a bimodal timing for magmatism, with a dominant peak at about 300 Ma and a less significant one at 244 Ma. Copper–Mo porphyry mineralization is related to the younger igneous event.Initial Hf isotopic ratios for the ~ 300 Ma zircons range from about − 2 to + 6 indicating that the magmas incorporated components with a significant crustal residence time. The 244 Ma magmas were derived from a less enriched source, with the initial Hf values ranging from + 2 to + 6, suggestive of a mixture with a more depleted component. Limited whole rock 144Nd/143Nd and 87Sr/86Sr isotopic ratios further support the likelihood that the Collahuasi Group magmatism incorporated significant older crustal components, or at least a mixture of crustal sources with more and less evolved isotopic signatures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号