首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   246篇
  免费   11篇
  国内免费   10篇
地球物理   73篇
地质学   147篇
天文学   7篇
综合类   4篇
自然地理   36篇
  2022年   1篇
  2021年   4篇
  2020年   4篇
  2019年   8篇
  2018年   6篇
  2017年   9篇
  2016年   7篇
  2015年   15篇
  2014年   13篇
  2013年   14篇
  2012年   4篇
  2011年   7篇
  2010年   4篇
  2009年   21篇
  2008年   24篇
  2007年   15篇
  2006年   17篇
  2005年   33篇
  2004年   6篇
  2003年   8篇
  2002年   14篇
  2001年   5篇
  2000年   4篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1995年   2篇
  1994年   2篇
  1993年   3篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   3篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
排序方式: 共有267条查询结果,搜索用时 534 毫秒
31.
32.
Glacial geological studies in tropical mountain areas of the Southern Hemisphere can be used to address two issues of late Pleistocene climate change: the global synchroneity of deglaciation and the magnitude of temperature reduction in the tropics. Radiocarbon dates from the Cordillera Real and from other areas in Perú and Bolivia suggest that late Pleistocene glaciation culminated between 14 000 and 12 000 yr BP, followed by rapid deglaciation. Because deglaciation was apparently synchronous with that in Northern Hemisphere regions, insolation change at high latitudes may not have been the only factor that produced global deglaciation at this time. Late Pleistocene glaciation in the Cordillera Real culminated when precipitation was 200 mm yr?1 higher and temperatures were 3.5° ±1.6°C lower than today; this produced an equilibrium-line altitude depression of about 300 ± 100 m on the western side of the cordillera. Prior to this, conditions were drier and probably at least as cold. However, the lack of moraines in the Cordillera Real dated to the Last Glacial Maximum (ca. 18000 yr BP) precludes using the equilibrium-line altitude method to quantitatively evaluate the discrepancy between warm sea-surface temperatures and cold terrestrial conditions reconstructed with other proxies for this time period.  相似文献   
33.
ABSTRACT All the Mesozoic and Cenozoic volcanic rocks of the Central Andes (from southern Ecuador to central Chile), except Recent ones, have been affected by episodes of regional metamorphism, without change in texture and structure. The metamorphism, which ranges from low zeolite to greenschist facies, can be classified as burial metamorphism because there is an overall increase in metamorphic grade with stratigraphic depth in the individual volcanic sequences separated by regional unconformities. Some sequences display metamorphic patterns transitional to ocean-floor and to geothermal field types, reflecting variations along and across the Andes in tectonic setting and thermal gradients. Volcanism was closely followed by metamorphism during each cycle characterizing the geological history of the Central Andes. The episodic nature of the metamorphism has led to breaks in metamorphic grade at regional unconformities and repetition of facies series, where strata of higher grade may even overlie those of lower grade. The existence of permeability-controlled distribution patterns of secondary minerals within individual flows shows that gradients of chemical activity, rate of reaction and Pfluid were acting, in addition to temperature and P,tot overall gradients, during the regional metamorphism. The alteration is accompanied by chemical changes and disturbances of the K-Ar and Rb-Sr isotope systems. Similarities between Mesozoic facies series in the western and eastern flanks of the Andes are consistent with a mechanism of ensialic spreading-subsidence.  相似文献   
34.
Pollen analysis of sediments from a high-altitude (4215 m), Neotropical (9°N) Andean lake was conducted in order to reconstruct local and regional vegetation dynamics since deglaciation. Although deglaciation commenced 15,500 cal yr B.P., the area around the Laguna Verde Alta (LVA) remained a periglacial desert, practically unvegetated, until about 11,000 cal yr B.P. At this time, a lycopod assemblage bearing no modern analog colonized the superpáramo. Although this community persisted until 6000 cal yr B.P., it began to decline somewhat earlier, in synchrony with cooling following the Holocene thermal maximum of the Northern Hemisphere. At this time, the pioneer assemblage was replaced by a low-diversity superpáramo community that became established 9000 cal yr B.P. This replacement coincides with regional declines in temperature and/or available moisture. Modern, more diverse superpáramo assemblages were not established until 4600 cal yr B.P., and were accompanied by a dramatic decline in Alnus, probably the result of factors associated with climate, humans, or both. Pollen influx from upper Andean forests is remarkably higher than expected during the Late Glacial and early to middle Holocene, especially between 14,000 and 12,600 cal yr B.P., when unparalleled high values are recorded. We propose that intensification of upslope orographic winds transported lower elevation forest pollen to the superpáramo, causing the apparent increase in tree pollen at high altitude. The association between increased forest pollen and summer insolation at this time suggests a causal link; however, further work is needed to clarify this relationship.  相似文献   
35.
The Chaco foreland basin was initiated during the late Oligocene as a result of thrusting in the Eastern Cordillera in response to Nazca–South America plate convergence. Foreland basins are the result of the flexural isostatic response of an elastic plate to orogenic and/or thrust sheet loading. We carried out flexural modelling along a W–E profile (21.4°S) to investigate Chaco foreland basin development using new information on ages of foreland basin strata, elastic and sedimentary thicknesses and structural histories. It was possible to reproduce present-day elevation, gravity anomaly, Moho depth, elastic thicknesses, foreland sedimentary thicknesses and the basin geometry. Our model predicted the basin geometry and sedimentary thicknesses for different evolutionary stages. Measured thicknesses and previously proposed depozones were compared with our predictions. Our results shed more light on the Chaco foreland basin evolution and suggest that an apparent decrease in elastic thickness beneath the Eastern Cordillera and the Interandean Zone could have occurred between 14 and 6 Ma.  相似文献   
36.
The southern Central Andes of Argentina and Chile (27–40°S) are the product of deformation, arc magmatism, and basin evolution above a long-lived subduction system. With sufficient timing and provenance constraints, Andean stratigraphic and structural records enable delineation of Mesozoic-Cenozoic variations in subsidence and tectonic regime. For the La Ramada Basin in the High Andes at ∼31–33°S, new assessments of provenance and depositional age provided by detrital zircon U-Pb geochronology help resolve deformational patterns and subsidence mechanisms over the past ∼200 Myr. Marine and nonmarine clastic deposits recorded the unroofing of basin margins and sediment contributions from the Andean magmatic arc during Late Triassic to Early Cretaceous extension, thermal subsidence, and possible slab rollback. Subsequent sediment delivery from the Coastal Cordillera corresponded with initial flexural accommodation in the La Ramada Basin during Andean shortening of late Early Cretaceous to Late Cretaceous age. The architecture of the foreland basin was influenced by the distribution of precursor extensional depocenters, suggesting that inherited basin geometries provided important controls on later flexural subsidence and basin evolution. Following latest Cretaceous to early Paleogene tectonic quiescence and a depositional hiatus, newly dated deposits in the western La Ramada Basin provide evidence for a late Paleogene episode of intra-arc and proximal retroarc extension (development of the Abanico Basin, principally in Chile, at ∼28–44°S). Inversion of this late Paleogene extensional basin system during Neogene compression indicates the southern Central Andes were produced by at least two punctuated episodes of shortening and uplift of Late Cretaceous and Neogene age.  相似文献   
37.
38.
We present a field‐data rich modelling analysis to reconstruct the climatic forcing, glacier response, and runoff generation from a high‐elevation catchment in central Chile over the period 2000–2015 to provide insights into the differing contributions of debris‐covered and debris‐free glaciers under current and future changing climatic conditions. Model simulations with the physically based glacio‐hydrological model TOPKAPI‐ETH reveal a period of neutral or slightly positive mass balance between 2000 and 2010, followed by a transition to increasingly large annual mass losses, associated with a recent mega drought. Mass losses commence earlier, and are more severe, for a heavily debris‐covered glacier, most likely due to its strong dependence on snow avalanche accumulation, which has declined in recent years. Catchment runoff shows a marked decreasing trend over the study period, but with high interannual variability directly linked to winter snow accumulation, and high contribution from ice melt in dry periods and drought conditions. The study demonstrates the importance of incorporating local‐scale processes such as snow avalanche accumulation and spatially variable debris thickness, in understanding the responses of different glacier types to climate change. We highlight the increased dependency of runoff from high Andean catchments on the diminishing resource of glacier ice during dry years.  相似文献   
39.
Glacier and permafrost hazards such as glacial‐lake outburst floods and rock–ice avalanches cause significant socio‐economic damages worldwide, and these processes may increase in frequency and magnitude if the atmospheric temperature rises. In the extratropical Andes nearly 200 human deaths were linked to these processes during the twentieth century. We analysed bibliographical sources and satellite images to document the glacier and permafrost dynamics that have caused socio‐economic damages in this region in historic time (including glacial lake outburst floods, ice and rock–ice avalanches and lahars) to unravel their causes and geomorphological impacts. In the extratropical Andes, at least 15 ice‐dammed lakes and 16 moraine‐dammed lakes have failed since the eighteenth century, causing dozens of floods. Some floods rank amongst the largest events ever recorded (5000 × 106 m3 and 229 × 106 m3, respectively). Outburst flood frequency has increased in the last three decades, partially as a consequence of long‐term (decades to centuries) climatic changes, glaciers shrinkage, and lake growth. Short‐term (days to weeks) meteorological conditions (i.e. intense and/or prolonged rainfall and high temperature that increased meltwater production) have also triggered outburst floods and mass movements. Enormous mass failures of glaciers and permafrost (> 10 × 106 m3) have impacted lakes, glaciers, and snow‐covered valleys, initiating chain reactions that have ultimately resulted in lake tsunamis and far‐reaching (> 50 km) flows. The eruption of ice‐covered volcanoes has also caused dozens of damaging lahars with volumes up to 45 × 106 m3. Despite the importance of these events, basic information about their occurrence (e.g. date, causes, and geomorphological impact), which is well established in other mountain ranges, is absent in the extratropical Andes. A better knowledge of the processes involved can help to forecast and mitigate these events. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
40.
El río San Juan, situado en la Provincia de San Juan (Argentina) cruza la Precordillera y otras unidades geológicas incluyendo la Depresión de Ullum y la Zona de La Laja, entre las latitudes 31°S y 32°S. El curso del río tiene un cierto caracter antecedente como puede deducirse por sus dos trazas perpendiculares unidas por otra casi paralela a las alineaciones estructurales principales. En la zona de la Precordillera, el valle del río San Juan muestra numerosos abanicos aluviales, situados en las zonas de confluencia entre el río principal y sus tributarios. Las superficies de los abanicos aluviales cuaternarios estan cortadas por una serie de escalones que consideramos como terrazas aluviales generadas por episodios repetitivos de agradación y degradación. El sector estudiado incluye una zona con una importante actividad sísmica reciente(La Laja), otra sin una importante actividad sísmica reciente (Precordillera), y una zona subsidente (Ullum) donde se formó un gran lago natural hace unos 6500 años. El antiguo río San Juan fue capturado por el valle de la Quebrada de Ullum mediante una incisión del orden de 25 m, que implicó una nueva adecuación del gradiente del río mediante los efectos de la erosión remontante. El gradiente del río San Juan muestra algunas irregularidades que, aunque no se presenten relacionadas directamente con las estructuras principales, estan relacionadas con la propia dinámica fluvial que acentúa la diferenciación litológica. La anchura del valle del río principal, la geometria y el gradiente de cada tributario, junto a las litologias del basamento y a las dimensiones de cada area fuente local, son los factores principales que controlan los procesos de la generación de las terrazas aluviales. En la zona de La Laja, donde la terraza mas alta soporta un nivel de travertino, la datación de los depósitos travertínicos proporciona datos como para suponer una tasa de incisión del orden de 0,9–1 mm/año, asociada a la actuación periódica de la falla de La Laja.
PDF (2344 K)
View More Related Articles
 
View Record in Scopus
doi:10.1016/j.jsames.2009.06.001    
Copyright © 2009 Elsevier Ltd All rights reserved.
Characterization of Quaternary faults by electric resistivity tomography in the Andean Precordillera of Western Argentina
Sabrina Y. Fazzitoa, , , Augusto E. Rapalinia, , José M. Cortésb, and Carla M. Terrizzanob,
aConsejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Geofísica Daniel Valencio (INGEODAV), Departamento de Ciencias Geológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, C1428EHA, Buenos Aires, ArgentinabConsejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Laboratorio de Neotectónica (LANEO), Departamento de Ciencias Geológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina  相似文献   
[首页] « 上一页 [1] [2] [3] 4 [5] [6] [7] [8] [9] [10] [11] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号