首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2072篇
  免费   350篇
  国内免费   166篇
测绘学   40篇
大气科学   152篇
地球物理   645篇
地质学   1561篇
海洋学   62篇
天文学   5篇
综合类   57篇
自然地理   66篇
  2023年   6篇
  2022年   33篇
  2021年   42篇
  2020年   51篇
  2019年   66篇
  2018年   49篇
  2017年   53篇
  2016年   87篇
  2015年   77篇
  2014年   99篇
  2013年   92篇
  2012年   60篇
  2011年   86篇
  2010年   88篇
  2009年   177篇
  2008年   216篇
  2007年   185篇
  2006年   210篇
  2005年   136篇
  2004年   123篇
  2003年   83篇
  2002年   67篇
  2001年   59篇
  2000年   49篇
  1999年   47篇
  1998年   48篇
  1997年   45篇
  1996年   41篇
  1995年   54篇
  1994年   30篇
  1993年   37篇
  1992年   24篇
  1991年   10篇
  1990年   13篇
  1989年   11篇
  1988年   11篇
  1987年   5篇
  1986年   2篇
  1985年   2篇
  1984年   7篇
  1983年   2篇
  1982年   1篇
  1980年   1篇
  1978年   2篇
  1954年   1篇
排序方式: 共有2588条查询结果,搜索用时 250 毫秒
991.
This paper studies the distribution features, the chemical elements beyond standards and the influencing factors of shallow groundwater quality in the Guanzhong Basin through the data monitored in the last twenty years. The final purpose is to comprehensively evaluate the divisions of groundwater quality in the Guanzhong Basin. Results show that , the groundwater quality is in good shape, and suitable for drinking. Drinking accounts for 16.02% of the total, most of which are distributed in the lubotan of Weibei. Some come from loess plateau of Qian-Liquan County and some are generated by the industrial pollution of Xingping City. Materials exceeding standards include chloride, sulfate, three nitrogen, fluoride, manganese, iron, hexavalent chromium and so on. The main factors influencing the quality of shallow groundwater include groundwater exploitation, natural background value of special components and precipitation, among which the groundwater exploitation poses the greatest impact. The depth of water is positively correlated with the concentration of sulfate, nitrate and total hardness.  相似文献   
992.
The application of advanced enhancement techniques for geophysical anomalies to global gravity (WGM2012) and magnetic (EMAG2) models sheds light on the complex tectonic evolution of the Rio Grande Rise (RGR) in the southern South Atlantic. Long wavelength Bouguer gravity lows indicate a thicker crust beneath of the ridge, whose nature can be related to a microcontinent or an excess of volcanism within the oceanic realm. Recently dredged continental rocks reinforce the hypothesis of a microcontinent or, at least, slivers of continental crust. However, the reserval magnetic pattern of the processed magnetic anomalies provide no evidence of aborted spreading center similar to the well-studied Jan Mayen microcontinent and the surrounding (inactive) Aegir and (active) Kolbeinsey ridges in the North Atlantic Ocean. The reversal magnetic anomalies show a series N-S trending parallel stripes roughly follow the current South American coastline and segmented by E-W oriented oceanic fracture zones (FZs). The magnetic stripes are bended eastwards at the RGR, showing a more complex magnetic pattern similar to that in the Iceland. The aborted Cruzeiro do Sul Rift (CSR) and the Jean Charcot Chain (JCC) are structures that cross the RGR and contribute to the understanding of the tectonic evolution of the South Atlantic Ocean. NW-SE oriented extensive gravity lows and bathymetric valleys, which mark the CSR, are segmented by E-W trending magnetic lineaments related to FZs. This structural configuration suggests that the extensional event, which formed the rift and the seamounts chain, was replaced by strike-slip movements along the FZs. In addition, we constructed a plate kinematic model for the evolution of the RGR based on bathymetric, free-air and Bouguer gravity and magnetic data. Our model comprises five main stages of the RGR formation and evolution between late Cretaceous and Paleocene (ca. 95 - 60 Ma), separated by published seafloor isochrones. The proposed model suggests that the RGR was built at the mid-Atlantic ridge by increased magmatism probably related to the Tristan da Cunha hotspot.  相似文献   
993.
The three-dimensional groundwater flow patterns in a gravel bar at the Danube east of Vienna were investigated and are discussed in this paper. The observed groundwater level gradients are highly dynamic and respond very quickly to changes in the river water levels. A variably saturated groundwater model was calibrated to the data to describe the complex dynamics of flow in the gravel bar. The model results suggest that short-term (6–48 h) fluctuations of river water levels cause variations in the exchange flow rates from − 35 l/s to 82 l/s. The highest rates occur during brief infiltration after rapidly rising river water levels. Simulations of different scenarios indicate that riverbank clogging will decrease the exchange fluxes by up to 80%, while clogging of both riverbank and riverbed essentially stops the flow exchange. The groundwater model is also used to simulate the transport of a conservative tracer. The variation of river water levels over time is shown to increase the extent of the active river–aquifer mixing zone in the gravel bar. These dynamic factors significantly enhance the dilution of conservative tracer concentrations in this zone.  相似文献   
994.
Simulation of biodegradation of chlorinated solvents in dense non-aqueous phase liquid (DNAPL) source zones requires a model that accounts for the complexity of processes involved and that is consistent with available laboratory studies. This paper describes such a comprehensive modeling framework that includes microbially mediated degradation processes, microbial population growth and decay, geochemical reactions, as well as interphase mass transfer processes such as DNAPL dissolution, gas formation and mineral precipitation/dissolution. All these processes can be in equilibrium or kinetically controlled. A batch modeling example was presented where the degradation of trichloroethene (TCE) and its byproducts and concomitant reactions (e.g., electron donor fermentation, sulfate reduction, pH buffering by calcite dissolution) were simulated. Local and global sensitivity analysis techniques were applied to delineate the dominant model parameters and processes. Sensitivity analysis indicated that accurate values for parameters related to dichloroethene (DCE) and vinyl chloride (VC) degradation (i.e., DCE and VC maximum utilization rates, yield due to DCE utilization, decay rate for DCE/VC dechlorinators) are important for prediction of the overall dechlorination time. These parameters influence the maximum growth rate of the DCE and VC dechlorinating microorganisms and, thus, the time required for a small initial population to reach a sufficient concentration to significantly affect the overall rate of dechlorination. Self-inhibition of chlorinated ethenes at high concentrations and natural buffering provided by the sediment were also shown to significantly influence the dechlorination time. Furthermore, the analysis indicated that the rates of the competing, nonchlorinated electron-accepting processes relative to the dechlorination kinetics also affect the overall dechlorination time. Results demonstrated that the model developed is a flexible research tool that is able to provide valuable insight into the fundamental processes and their complex interactions during bioremediation of chlorinated ethenes in DNAPL source zones.  相似文献   
995.
Problems in hydrology and water management that involve both surface water and groundwater are best addressed with simulation models that can represent the interactions between these two flow regimes. In the current generation of coupled models, a variety of approaches is used to resolve surface–subsurface interactions and other key processes such as surface flow propagation. In this study we compare two physics-based numerical models that use a 3D Richards equation representation of subsurface flow. In one model, surface flow is represented by a fully 2D kinematic approximation to the Saint–Venant equations with a sheet flow conceptualization. In the second model, surface routing is performed via a quasi-2D diffusive formulation and surface runoff follows a rill flow conceptualization. The coupling between the land surface and the subsurface is handled via an explicit exchange term resolved by continuity principles in the first model (a fully-coupled approach) and by special treatment of atmospheric boundary conditions in the second (a sequential approach). Despite the significant differences in formulation between the two models, we found them to be in good agreement for the simulation experiments conducted. In these numerical tests, on a sloping plane and a tilted V-catchment, we examined saturation excess and infiltration excess runoff production under homogeneous and heterogeneous conditions, the dynamics of the return flow process, the differences in hydrologic response under rill flow and sheet flow parameterizations, and the effects of factors such as grid discretization, time step size, and slope angle. Low sensitivity to vertical discretization and time step size was found for the two models under saturation excess and homogeneous conditions. Larger sensitivity and differences in response were observed under infiltration excess and heterogeneous conditions, due to the different coupling approaches and spatial discretization schemes used in the two models. For these cases, the sensitivity to vertical and temporal resolution was greatest for processes such as reinfiltration and ponding, although the differences between the hydrographs of the two models decreased as mesh and step size were progressively refined. In return flow behavior, the models are in general agreement, with the largest discrepancies, during the recession phase, attributable to the different parameterizations of diffusion in the surface water propagation schemes. Our results also show that under equivalent parameterizations, the rill and sheet flow conceptualizations used in the two models produce very similar responses in terms of hydrograph shape and flow depth distribution.  相似文献   
996.
磁赤道处化极方法   总被引:5,自引:3,他引:2       下载免费PDF全文
骆遥  薛典军 《地球物理学报》2010,53(12):2998-3004
化向地磁极(化极)是最基本的磁测资料处理方法之一,化极能消除或减少斜磁化影响,提高对磁测资料的认识程度和解释水平,对研究地壳产生的磁异常具有重要意义.但低纬度地区特别是磁赤道处,化极处理很不稳定甚至奇异,一直是位场研究的难点.针对地磁纬度较低特别是磁赤道地区磁异常化极的困难,利用从磁北极处垂直磁化向低纬度地区水平磁化方向转换稳定的特点,提出"狭义化赤"概念,并将其与低纬度磁异常"倒相"解释方法结合,提出专门用于磁赤道处化极的方法.该方法扩展了现有的化极理论,实现了磁赤道处的稳定化极.区别于目前任何方法,专门用于(近)水平磁化条件下的化极计算,具有原理简单,实现方便,收敛速度快等特点.对理论模型和实际资料计算表明这种针对磁赤道地区磁异常的化极处理方法是稳定、可靠的.  相似文献   
997.
根据"乌鲁木齐市活断层探测与地震危险性评价"项目的成果,确定了乌鲁木齐及周边地区的发震构造模型。在此基础上,结合地震活动特征,根据地震重复及构造类比原则对乌鲁木齐市周围的潜在震源区进行了重新划分。由此,采用地震危险性概率分析方法计算乌鲁木齐市及周围县市的基岩峰值加速度,并进行地震动峰值加速度复核。由复核结果可以看出,此潜在震源区划分方案对乌鲁木齐市的影响不大,但对阜康市的影响较大,使该市地震动峰值加速度由原来的0.15g变化为0.20g。  相似文献   
998.
Despite the presence of gas in river beds being a well known phenomenon, its potential feedbacks on the hydraulic and thermal dynamics of the hyporheic zone has not been widely studied. This paper explores hypotheses that the presence of accumulated gas impacts the hydraulic and thermal dynamics of a river bed due to changes in specific storage, hydraulic conductivity, effective porosity, and thermal diffusivity. The hypotheses are tested using data analysis and modelling for a study site on the urban River Tame, Birmingham, UK. Gas, predominantly attributed to microbial denitrification, was observed in the river bed up to around 14% by volume, and to at least 0.8 m depth below river bed. Numerical modelling indicates that, by altering the relative hydraulic conductivity distribution, the gas in the river bed leads to an increase of groundwater discharge from the river banks (relative to river bed) by a factor of approximately 2 during river low flow periods. The increased compressible storage of the gas phase in the river bed leads to an increase in the simulated volume of river water invading the river bed within the centre of the channel during storm events. The exchange volume can be more than 30% greater in comparison to that for water saturated conditions. Furthermore, the presence of gas also reduces the water-filled porosity, and so the possible depth of such invading flows may also increase markedly, by more than a factor of 2 in the observed case. Observed diurnal temperature variations within the gaseous river bed at 0.1 and 0.5 m depth are, respectively, around 1.5 and 6 times larger than those predicted for saturated sediments. Annual temperature fluctuations are seen to be enhanced by around 4 to 20% compared to literature values for saturated sediments. The presence of gas may thus alter the bulk thermal properties to such a degree that the use of heat tracer techniques becomes subject to a much greater degree of uncertainty. Although the likely magnitude of thermal and hydraulic changes due to the presence of gas for this site have been demonstrated, further research is needed into the origins of the gas and its spatial and temporal variability to enable quantification of the significance of these changes for chemical attenuation and hyporheic zone biology.  相似文献   
999.
位涡塔结构及演变对飓风Wilma(2005)强度变化的影响   总被引:2,自引:2,他引:0       下载免费PDF全文
本文利用高分辨率模式输出资料,对飓风Wilma(2005)不同发展阶段内位涡塔(Potential Vorticity Tower:PVT)的结构和演变进行诊断分析,并讨论位涡塔分布特征对飓风快速增强(Rapid Intensification:RI)过程的影响.研究结果表明,内核区域位涡的强度和结构变化主要取决于高层的暖心下传、中层的凝结潜热释放和低层的动力稳定性,而低层切向平均位涡的结构及其稳定性变化,对飓风快速增强的不同发展阶段具有很好的指示意义.飓风Wilma增强过程中,在高层增温、潜热释放和对流垂直混合作用下,PVT的结构出现单极位涡塔(Monopole PVT:MPVT)和中空位涡塔(Hollow PVT:HPVT)的相互转化,也造成了涡旋系统动力稳定性的变化.在实际个例中,重新定义位涡环的结构参数,即相对厚度和中空度,这两个参数能够表征系统的稳定性,将其在RI过程中的变化与飓风Wilma强度变化作相关性分析,表明结构参数能够表征PVT结构的不稳定性,且与飓风系统强度变化参数具有很好的相关性,结构参数与海平面气压变化率的相关性能够通过显著性检验.  相似文献   
1000.
Inverse modeling is widely used to assist with forecasting problems in the subsurface. However, full inverse modeling can be time-consuming requiring iteration over a high dimensional parameter space with computationally expensive forward models and complex spatial priors. In this paper, we investigate a prediction-focused approach (PFA) that aims at building a statistical relationship between data variables and forecast variables, avoiding the inversion of model parameters altogether. The statistical relationship is built by first applying the forward model related to the data variables and the forward model related to the prediction variables on a limited set of spatial prior models realizations, typically generated through geostatistical methods. The relationship observed between data and prediction is highly non-linear for many forecasting problems in the subsurface. In this paper we propose a Canonical Functional Component Analysis (CFCA) to map the data and forecast variables into a low-dimensional space where, if successful, the relationship is linear. CFCA consists of (1) functional principal component analysis (FPCA) for dimension reduction of time-series data and (2) canonical correlation analysis (CCA); the latter aiming to establish a linear relationship between data and forecast components. If such mapping is successful, then we illustrate with several cases that (1) simple regression techniques with a multi-Gaussian framework can be used to directly quantify uncertainty on the forecast without any model inversion and that (2) such uncertainty is a good approximation of uncertainty obtained from full posterior sampling with rejection sampling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号