首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3122篇
  免费   632篇
  国内免费   623篇
测绘学   112篇
大气科学   84篇
地球物理   765篇
地质学   1912篇
海洋学   384篇
天文学   10篇
综合类   150篇
自然地理   960篇
  2024年   20篇
  2023年   62篇
  2022年   119篇
  2021年   127篇
  2020年   144篇
  2019年   146篇
  2018年   103篇
  2017年   121篇
  2016年   144篇
  2015年   134篇
  2014年   207篇
  2013年   188篇
  2012年   176篇
  2011年   175篇
  2010年   166篇
  2009年   217篇
  2008年   218篇
  2007年   180篇
  2006年   183篇
  2005年   139篇
  2004年   170篇
  2003年   135篇
  2002年   107篇
  2001年   108篇
  2000年   130篇
  1999年   96篇
  1998年   100篇
  1997年   92篇
  1996年   75篇
  1995年   68篇
  1994年   59篇
  1993年   51篇
  1992年   53篇
  1991年   43篇
  1990年   26篇
  1989年   18篇
  1988年   14篇
  1987年   5篇
  1986年   5篇
  1985年   12篇
  1984年   6篇
  1983年   10篇
  1982年   7篇
  1981年   16篇
  1975年   1篇
  1971年   1篇
排序方式: 共有4377条查询结果,搜索用时 31 毫秒
61.
西藏扎布耶盐田盐渍土的改性配比试验   总被引:1,自引:0,他引:1  
根据盐渍土的物理化学性质,采用掺入不同比例石灰或水泥的方法进行改性处理。经击实、抗剪和抗压强度试验结果表明,盐渍土掺入石灰或水泥改性后,混合料的最大干密度、最优含水率、强度指标等均有增加,特别是内聚力迅速增长。研究表明,盐渍土混合料的性状得到了明显改善,改性后的混合料可用于修建盐田埝堤类相关工程。  相似文献   
62.
Definition and measurement of salinity in salt lakes   总被引:4,自引:0,他引:4  
Salinity is the most important chemical attribute of athalassic salt lakes. Even so, some confusion persists of what salinity means and how to measure it. For sal lakes, salinity is best defined as the sum total of all ion concentrations, or total ion concentration. Ideally, it is recommended that salinities be expressed on a mass per mass basis and as ppt (parts per thousand). Direct measurements of salinity can only be derived from full ionic analyses. Indirect measurements can be derived by determinations of density, conductivity, freezing point depression and total dissolved solids or matter.  相似文献   
63.
We use palaeolimnological techniques to reconstruct the eutrophication history of a volcanic lake (Lake Albano, central Italy) over the past three centuries. The presence of annual varves down to the bottom of the core (c. 1700 A.D.) indicated the lack of bioturbation and likely long-term meromixis. Sedimentation rates were estimated by varve counts (calcite/diatom couplets), indicating a mean rate of 0.15 cm yr–1. The reconstruction of eutrophication was traced using past populations of algal and photosynthetic bacteria (through their fossil pigment), and geochemistry, as well as fossil remains of chironomids. Phaeophorbidea and the red carotenoid astaxanthin were used to detect past zooplankton development.The first sign of trophic change related to human activities is datedc. 1870 A.D. From that period onward a sharp increase of authigenic CaCO3, nitrogen, N:P ratio, and dinoxanthin, a characteristic carotenoid of Chrysophyceae and Dinophyceae, is observed.Chironomid analyses showed the near absence of a deep water fauna throughout the core length. The populations of chironomid larvae are restricted to oxygenated littoral zones. In fact, the few fossil remains found are primarily of littoral origin, representing shallow water midges that were transported to profundal waters. The reduction of total chironomid in the uppermost layers of the core is to be related to human land uses.  相似文献   
64.
根据袁见齐教授“高山深盆”成盐模式,探讨新疆天山对第四纪盐类矿床的形成和控制作用,阐述了天山地貌、气候、水文特征与盐类矿产的分布规律和特征。认为“高山深盆”并非一定是四周环山的深盆,可以是某一高山与其间深盆或两侧盆地的有机组合。高山的屏障作用造成了垂直的气候分带,在潮湿多雨的山区利于成盐组份的析出并迁移到干旱少雨的闭流深盆中,形成盐类矿床。  相似文献   
65.
Wallywash Great Pond (17° 57 N, 77° 48 W, 7 m a.s.l.) is the largest perennial lake in Jamaica. It occupies a fault trough within the karstic White Limestone. The Great Pond is a hardwater lake with a pH of 8.2–8.6 and an alkalinity of 3.6–3.9 meq 1–1. Its chemistry is strongly influenced by the spring discharge from the limestone. The lake water is subject to degassing, evaporation and bicarbonate assimilation by submerged plants and algae, resulting in marl precipitation. A 9.23 m core (WGP2), taken from a water depth of 2.8 m, was analysed for magnetic susceptibility, loss-on-ignition, carbonate content, mole % MgCO3 in calcite, and stable isotopes in the fine carbonate fraction. The chronology is based on ten14C and four U/Th dates. Four main sediment types alternate in the core: marl; organic, calcareous mud; organic mud or peat; and earthy, brown, calcareous mud. The marls represent periods of wet/warm climate during sea-level highstands and the organic deposits, shallower, swampy conditions. In contrast, the brown, calcareous muds were laid down when the lake was dry or ephemeral. The last interglacial (120 000- 106 000 yr BP) is represented by three distinct marl units. After a dry interval, stable, wet/warm conditions set in from 106 000 to 93 000 yr BP. A dry/cool climate prevailed between 93 000 and at least 9500 yr BP. Three subsequent cycles of alternating wet and dry conditions culminated in flooding of the basin by the Black River during the late Holocene. These recent events cannot be accurately dated by14C due to significant and temporally-variable inputs of dead carbon from the springs.  相似文献   
66.
This multi-disciplinary investigation documents the longterm effects of atmospheric pollution of metals and acids on a geologically sensitive catchment in the umava Mountains, southwestern Czech Republic, a region with a long history of human disturbance. A 30 cm long sediment core (I) from ertovo Lake was analyzed for natural and artifical radionuclides, metals, diatoms, chrysophytes, and pollen in sediments accumulated during the last 200 years. A second core (II), extending to 95 cm, included sediment judged to be free of atmospheric deposition of pollutants associated with the Industrial Revolution. Chronostratigraphic markers include several changes in the pollen assemblages corresponding to well-documented changes in land-use, and distinct distributions of 137Cs, 134Cs and 241Am from weapons testing and the 1986 nuclear accident at Chernobyl, Russia. These markers corroborate the 210Pb dating and, together, produce a reliable chronology extending back nearly to 1800 A.D.Stratigraphic profiles of Cu, Pb, and Zn in Core I are unlike any previously reported in the literature. Concentrations of Cu, Pb, and Zn remain generally above 100, 400, and 200 g g-1, respectively, for the 200 years represented by Core I. These values are unusually high for sediments from a watershed with no known heavy-metal ore bodies. Accumulation rates for Cu, Pb, and Zn, which include both atmospheric and watershed contributions, are also high (ca 1, > 1 and > 1 g cm-2 yr-1, respectively) for the same period, although the anthropogenic contribution of Zn rose from nearly zero at 1800 A.D. The Cu and Pb accumulation rates rose dramatically about 1640 A.D.Accumulation rates of anthropogenically-derived Be, a relatively abundant element in the soft coals of the region, are also elevated by about 0.01 g cm-2 yr-1 in sediments of this period. Vanadium accumulation rates increased only since 1980 A.D., presumably along with increased consumption of oil.Diatom assemblages illustrate that the lake was acidic (pH between 4.5 and 5) through at least the past 200 years. The pH declined significantly (from ca 5 to 4) between 1960 and 1985 with a slight increase to 4.5 in the last few years. Recent diatom and chrysophyte assemblages suggest high trace metal concentrations, consistent with the present lake-water chemistry.  相似文献   
67.
This pilot study examines the potential of obtaining a sedimentary record of paleoenvironmental/climatic/hydrologic conditions for saline Redberry Lake in southern Saskatchewan, Canada. The tools are mineralogy, stable isotopes and pigments. The upper meter of an offshore sediment core contains 10 to 20% by weight aragonite (CaCO3), which apparently precipitated in the water column. The 18O and 13C of the bulk aragonite (corrected for content of detrital calcite) vary by 4 to 5. Enrichment in 18O in aragonite is significantly correlated with pigment concentrations (chlorophyll a, phaeophytin). The 18O and pigment data provide evidence for relatively dry and/or warm conditions and high limnetic productivity for the period 2500 to 1500 yrs B.P. After 1500 B.P., the climate was apparently similar to the present, with two episodes of relatively enhanced productivity, dryness and/or warmth, at around 1000 to 900 and 500 to 200 B.P. During the past century, Redberry Lake has decreased approximately 8 m in depth and its salinity has doubled. No clear sedimentary signal was observed in response to these recent hydrologic trends. These changes have not been associated with a significant climate trend in the region, but may have been induced by land use changes in the catchment.This publication is the third of a series of papers presented at the Conference on Sedimentary and Paleolimnological Records of Saline Lakes. This Conference was held August 13–16, 1991 at the University of Saskatchewan, Saskatoon, Canada. Dr. Evans is serving as Guest Editor for this series.  相似文献   
68.
The hitherto longest found lake sediment sequence on Byers Peninsula, Livingston Island, South Shetland Islands, was analysed with respect to lithology, chronology, diatoms, Pediastrum, pollen and spores, mosses, mineralogy, and sediment chemistry. During the ca. 5000 year long development the sediments were influenced by frequent tephra fall-outs. This volcanic impact played a major role in the lake's history during two periods, 4700–4600 and 2800–2500 BP, but was of importance during the lake's entire history with considerable influence on many of the palaeoenvironmentally significant indicators. The large and complex data set was analysed and zonated with different types of multivariate analysis. This resulted in a subdivision of the sequence into 8 time periods and 21 variables. Redundancy analysis (RDA) of this data set, both without and with the tephra periods, and with 4–6 of the variables as explanatory environmental variables, reveal that climatic/environmental signals are detectable. The palaeoclimatic picture that emerged out of the tephra noise suggests that the first 100 years were characterized by mild, humid conditions. This was followed by a less mild and humid climate until ca. 4000 BP when a gradual warming seems to have started, coupled with increased humidity. These mild and humid conditions seem to have reached an optimum slightly after 3000 BP. At ca. 2500 BP a distinct climatic deterioration occurred with colder and drier conditions and long seasons with ice cover. This arid, cold phase probably reached its optimum conditions at ca. 1500 BP, when slightly warmer conditions might have prevailed for a while. Except for the modern sample with rather mild climate, the last 1400 years seem to have been fairly arid and cold, and the effects of the frequent volcanic activity during this period is only vaguely seen in the records.  相似文献   
69.
The zooplankton of two salt ponds at Aveiro was studied to evaluate its density and diversity. Samples were collected biweekly from the salt ponds Esmolas and Tanoeiras. Samples were first separated into Holoplankton (Copepoda, nauplii,Acartia, Ostracoda and Anostraca) and Meroplankton (Mollusca, Insecta, annelidan larvae and Ichthyoplankton). The Holoplankton was mainly composed of:Acartia tonsa, Acartia sp.,Eurytemora velox, Artemia sp., and harpacticoids and calanoids. In both salt ponds, species diversity was identical, but total zooplankton density was higher in the Tanoeiras salt pond, probably because its physical and chemical characteristics allowed the development of stable communities.  相似文献   
70.
We estimate the response of chl-a (mg · m–3) to changes in concentrations of total phosphorus (TP) by calculating the slopeS = chl-a/TP in chl-a =f(TP) graphs. Results show that in years where algae are P-limited oligotrophic lakes respond less (median slope 0.21) to changes in nutrient concentrations than eutrophic lakes, (median slope 0.31) and these again less than hypereutrophic lakes, (median slope 1.02). We find no saturation value for the slope within the TP range considered (6–480 mg · m–3). Chl-a in eutrophic lakes responds more frequently to non-nutrient factors than oligotrophic and hypereutrophic lakes. Results obtained by replacing TP with a new nutrient parameter, TP = 0.056 · TP · IN0.226, in which inorganic nitrogen, IN, is factored in, suggest that nitrogen has an influence on chl-a in oligotrophic lakes. Blue-green algae respond less to changes in TP than other algal species, e.g., diatoms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号