首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   306篇
  免费   57篇
  国内免费   175篇
测绘学   2篇
大气科学   241篇
地球物理   82篇
地质学   117篇
海洋学   44篇
天文学   3篇
综合类   9篇
自然地理   40篇
  2023年   5篇
  2022年   6篇
  2021年   10篇
  2020年   9篇
  2019年   24篇
  2018年   11篇
  2017年   12篇
  2016年   17篇
  2015年   21篇
  2014年   14篇
  2013年   29篇
  2012年   16篇
  2011年   25篇
  2010年   14篇
  2009年   20篇
  2008年   15篇
  2007年   34篇
  2006年   24篇
  2005年   10篇
  2004年   20篇
  2003年   19篇
  2002年   14篇
  2001年   17篇
  2000年   18篇
  1999年   13篇
  1998年   27篇
  1997年   10篇
  1996年   9篇
  1995年   10篇
  1994年   8篇
  1993年   15篇
  1992年   3篇
  1991年   3篇
  1989年   1篇
  1988年   5篇
  1987年   1篇
  1985年   2篇
  1984年   1篇
  1982年   5篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   17篇
排序方式: 共有538条查询结果,搜索用时 15 毫秒
61.
Potential impacts of human-induced land cover change on East Asia monsoon   总被引:10,自引:0,他引:10  
As one major performance of anthropogenic activities, human-induced land use and land cover changes in East Asia have been one of the largest regions in the world. In the past 3000 years, more than 60% of the region has been affected by conversion of various categories of natural vegetation into farmland, conversion of grassland into semidesert and widespread land degradation. Such human-induced land cover changes result in significant changes of surface dynamic parameters, such as albedo, surface roughness, leaf area index and fractional vegetation coverage, etc.The results of a pair of numerical experiments in this paper have shown that by altering the complex exchanges of water and energy from surface to atmosphere, the changes in land cover have brought about significant changes to the East Asian monsoon. These include weakening of the summer monsoon and enhancement of winter monsoon over the region and a commensurate increase in anomalous northerly flow. These changes result in the reduction of all components of surface water balance such as precipitation, runoff, and soil water content. The consequent diminution of northward and inland moisture transfer may be a significant factor in explaining the decreasing of atmospheric and soil humidity and thus the trend in aridification observed in many parts of the region, particularly over Northern China during last 3000 years.The variation of East Asia monsoon presented here is the result of land cover changes only. It is very likely that the anthropogenic modification of monsoon system would have been occurred in the long history of civilization.  相似文献   
62.
The first two series(RMM1 and RMM2) of RMM Index(all-Season Real-time Multivariate MJO Index) are computed to obtain the interannual variation of the preceding winter(preceding December to current February) MJO strength,according to which active(or inactive) years of preceding winter MJO are divided.By utilizing the data provided by NCEP/NCAR,CMAP and China’s 160 stations from 1979 to 2008,we studied the preceding winter MJO strength and discovered that the summer precipitation in the basin are of significantly negative correlation,i.e.when the preceding winter MJO is relatively active,the summer precipitation in the basin decreases,and vise verse.We also analyzed the causes.When the preceding winter MJO is relatively active,its release of potential heat facilities Inter-Tropical Convergence Zone(ITCZ) to strengthen and locate northward in winter and propagate northeastward.This abnormal situation lasts from winter to summer.In mid-May,ITCZ jumps northward to the South China Sea,the western Pacific subtropical high withdraws eastward,and the South China Sea summer monsoon sets off and strengthens.In summer,ITCZ propagates to South China Sea-subtropical western Pacific,the zonal circulation of subtropical Pacific strengthens,and a local meridional circulation of the South China Sea to the basin area forms,giving rise to the East Asia Pacific teleconnection wave-train.An East Asian monsoon trough and the Meiyu front show opposite features from south to north,the East Asian summer monsoon strengthens and advances northward.As a result,the summer monsoon is weakened as the basin is controlled by the subtropical high continually,with less rain in summer.On the contrary,when the preceding winter MJO is inactive,ITCZ weakens and is located southward,the subtropical high is located southward in summer,and the basin is in a region of ascending airflow with prevailing southwest wind.The East Asian monsoon trough and EASM weaken so that summer monsoon is reduced in the basin where precipitation increases.  相似文献   
63.
Projected Changes in Asian Summer Monsoon in RCP Scenarios of CMIP5   总被引:2,自引:0,他引:2       下载免费PDF全文
Responses of the Asian Summer Monsoon(ASM) in future projections have been studied based on two core future projections of phase five of the Coupled Model Intercomparison Project(CMIP5) coordinated experiments with the IAP-coupled model FGOALS_s2(the Flexible Global Ocean-Atmosphere-Land System Model).The projected changes of the ASM in climatological mean and interannual variability were respectively reported.Both the South Asian Summer Monsoon(SASM) and the East Asian Summer Monsoon(EASM) were intensified in their climatology,featuring increased monsoon precipitation and an enhanced monsoon lower-level westerly jet flow.Accordingly,the amplitude of the annual cycle of rainfall over East Asia(EA) is enhanced,thereby indicating a more abrupt monsoon onset.After the EA monsoon onset,the EASM marched farther northward in the future scenarios than in the historical runs.In the interannual variability,the leading pattern of the EASM,defined by the first multi-variable EOF analysis over EA,explains more of the total variances in the warmest future scenario,specifically,Representative Concentration Pathway(RCP8.5).Also,the correlation coefficients analysis suggests that the relationship between the EASM interannual variations and ENSO was significantly strengthened in the future projections,which may indicate improved predictability of the EASM interannual variations.  相似文献   
64.
利用呼和浩特市南郊1961-2008年夏季降水资料与海温、亚洲季风、西太平洋副热带高压和东亚阻塞高压等因子进行相关分析,结果表明:这些因子的异常变化,可以作为呼和浩特市南郊夏季降水的预测信号。  相似文献   
65.
The relationship between dust weather frequency (DWF), which denotes the number of days of dust weather events, over Beijing and the East Asian Monsoon (EAM) was studied using DWF data for Beijing during the period 1951--2006. Results show that, during this period, the blowing-dust weather frequency (BDWF), as well as the indices of East Asian winter monsoon (EAWM) and East Asian summer monsoon (EASM), all decreased considerably, with a t-test confidence level of 99%. The correlation coefficients between the chosen EAWM index and BDWF over Beijing in winter and the following spring were 0.34 and 0.33, respectively, with significance levels of 0.01 and 0.02, respectively. For the chosen EASM index and BDWF, these correlation coefficients were 0.51 and 0.45, respectively, with both at a confidence level exceeding 99.9%. With the linear trends removed, the values (in the same order as above) were 0.14, 0.14, -0.12, and -0.09, all not significant at the 95% confidence level. Clearly, the EAM relates mainly to DWF over long timescales. To a certain extent, the EAM might have some impact on DWF by affecting the associated surface air temperature and precipitation during the corresponding time period in sand-dust source regions at the interannual scale. A stronger (weaker) EAWM might advance (suppress) the occurrence of DWF, and the opposite for the EASM.  相似文献   
66.
The output of 25 models used in the Coupled Model Intercomparison Project phase 3 (CMIP3) were evaluated, with a focus on summer precipitation in eastern China for the last 40 years of the 20th century. Most models failed to reproduce rainfall associated with the East Asian summer monsoon (EASM), and hence the seasonal cycle in eastern China, but provided reasonable results in Southwest (SW) and Northeast China (NE). The simulations produced reasonable results for the Yangtze-Huai (YH) Basin area, although the Meiyu phenomenon was underestimated in general. One typical regional phenomenon, a seasonal northward shift in the rain belt from early to late summer, was completely missed by most models. The long-term climate trends in rainfall over eastern China were largely underestimated, and the observed geographical pattern of rainfall changes was not reproduced by most models. Precipitation extremes were evaluated via parameters of fitted GEV (Generalized Ex- treme Values) distributions. The annual extremes were grossly underestimated in the monsoon-dominated YH and SW regions, but reasonable values were calculated for the North China (NC) and NE regions. These results suggest a general failure to capture the dynamics of the EASM in current coupled climate models. Nonetheless, models with higher resolution tend to reproduce larger decadal trends and annual extremes of precipitation in the regions studied.  相似文献   
67.
近40年东亚季风变化特征及其与海陆温差关系   总被引:6,自引:3,他引:3       下载免费PDF全文
利用NCEP/NCAR再分析资料, 计算了乔云亭等定义的1957—2000年东亚季风指数, 研究了各指数之间相互关系和年际变化的主要特征, 在此基础上又利用全国194站1957—2000年地面资料分析东亚季风指数的年际变化与各气象要素场的年际变化之间的关系以及我国近40年气候变化特点。结果表明:西南季风、东南季风和偏北季风的年变化有所差异; 夏季, 东部地区降水量与相对应各个海区海陆温差负相关显著, 并且江淮区对应的海陆温差与东北区和华北区夏季降水有较好的正相关关系, 当江淮区对应的海陆温差降低时, 江淮区夏季降水量增加, 华北区和东北区夏季降水量减少; 经过前后两段时期 (1957—1978年和1979—2000年) 对比发现海陆温差变化对我国季风区夏季降水的影响在增强。同时, 发现850 hPa气温变化在前后两段时期也发生了显著变化, 1979年之前我国东部升温最快的区域位于华北西南部和江淮东部, 1979年之后升温最快的区域转移到江淮西部和我国东南部的海面上。  相似文献   
68.
Entrainment rate refers to the ratio of surrounding air quality to air quality involved in rising unit distance, including turbulent entrainment and dynamic entrainment, which are applied to the boundary layer parametrization of convective clouds, the improvement of numerical model, the observation of cloud droplet spectral dispersion and the study of tropical cyclones.Based on the daily data at 07:00 and 19:00 every 10 m of five stations such as Minqin, Yuchong, Pingliang, Yinchuan and Yan'an from May to September during 2006-2016, combined with the daily observation data on the ground, the Entrainment Rates(ER) of different heights were calculated, and the relationships between ER and height in different regions, precipitation as well as monsoon during the monsoon period were further obtained. The main results were as follows: The ER was proportional to air temperature and saturated water vapor pressure, but inversely proportional to relative humidity. The relative humidity threshold of cloud was 65%. The higher the relative humidity threshold was, the lower the cloud height of different orders of precipitation was, and the cloud height was higher with the increase of rainfall. ER had obvious diurnal changes and regional differences: It was obviously smaller at 07:00 than at 19:00 from ground to 3 km, which weakened with the increase of height in the near surface , but strengthened with the increase of height above 500 m; From small to large, the monsoon affected area, the monsoon swing area and the non-monsoon area were in turn, and there was no regional difference above 3 km. ER was closely related to the intensity and property of precipitation in monsoon period. The ER weakened with the enhancement of rain intensity from near ground to below 600 m, but strengthened with the enhancement of rain intensity from 500 m to 2~3 km.From near ground to below 700 m, the ER of stable precipitation was strong, but that of convective precipitation was strong above 700 m. The convective precipitation had big saturated water vapor pressure and strong ER , while the stable precipitation had big saturated water vapor density, rich water vapor but weak ER. The relationship between ER and monsoon as well as its duration: From no monsoon to monsoon ER was weakened, the strongest maximum height was also decreasing. There was no significant difference in the duration of ER between the non-monsoon area and the monsoon affected area, but the longer the monsoon swing area lasted in the near ground layer, the smaller the ER was, while the opposite was at 1~2 km in the high altitude. The relationship between ER and the APO monsoon intensity index showed that: At 07:00, the ER strengthened with height from near ground to below 800 m, but weakened with height above 800 m,and the monsoon intensity was not related to the ER. At 19:00, the ER strengthened with the height near ground but weakened with the height above 300 m, and the stronger the monsoon was, the smaller the ER was. The ER weakened with the decrease of boundary layer height.  相似文献   
69.
The inverse relationship between the warm phase of the El Ni?o Southern Oscillation(ENSO) and the Indian Summer Monsoon Rainfall(ISMR) is well established. Yet, some El Ni?o events that occur in the early months of the year(boreal spring) transform into a neutral phase before the start of summer, whereas others begin in the boreal summer and persist in a positive phase throughout the summer monsoon season. This study investigates the distinct influences of an exhausted spring El Ni?o(springtime)...  相似文献   
70.
论东亚夏季风的特征、驱动力与年代际变化   总被引:9,自引:0,他引:9  
本文是以新的资料和研究结果对东亚夏季风的基本特征、驱动力和年代际变化所作的重新分析与评估。内容包括四个部分:(1)东亚夏季风的基本特征;(2)东亚夏季风的驱动力;(3)东亚夏季风的年代际变率与原因;(4)东亚夏季风与全球季风的关系。结果表明:东亚夏季风是亚洲夏季风的一个重要有机部分,主要由来源于热带的季风气流组成,并随季节由南向北呈阶段性推进,它是形成夏季东亚天气与气候的主要环流和降水系统。驱动夏季风的主要强迫有三部分:外部强迫、耦合强迫与内部变率,其中人类活动引起的外强迫(气候变暖、城市化、气溶胶增加等)是新出现的外强迫,它正不断改变着东亚夏季风的特征与演变趋势。海洋与陆面耦合强迫作为自然因子是引起东亚夏季风年际和年代际变化的主要原因,其中太平洋年代尺度振荡(PDO)与北大西洋多年代尺度振荡(AMO)的协同作用是造成东亚夏季风30~40年周期振荡的主要原因。1960年代以后,东亚夏季风经历了强—弱—强的年代际变化,相应的中国东部夏季降水型出现了“北多南少”向“南涝北旱”以及“北方渐增”的转变。最近的研究表明,上述东亚夏季风年代际变化与整个亚非夏季风系统的变化趋势是一致的。在本世纪主要受气候变暖的影响,夏季风雨带将持续北移,中国北方和西部地区出现持续性多雨的格局。最后本文指出,亚非夏季风系统相比于其他区域季风系统更适合全球季风的概念。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号