首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56篇
  免费   8篇
  国内免费   7篇
测绘学   11篇
大气科学   1篇
地球物理   12篇
地质学   16篇
综合类   6篇
自然地理   25篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   9篇
  2018年   10篇
  2017年   3篇
  2016年   5篇
  2015年   7篇
  2014年   2篇
  2013年   7篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
  2009年   4篇
  2008年   2篇
  2007年   6篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  1998年   1篇
排序方式: 共有71条查询结果,搜索用时 15 毫秒
31.
The present study evaluates the effectiveness and suitability of cover management factors (C factor) generated through different techniques like land use/land cover-based arbitrary value (CLULC), Normalised Different Vegetation Index-based methods CNDVI1 and CNDVI2 and Modified Soil Adjusted Vegetation Index 2-based method (CMSAVI2). The C factors generated using these four methods were tested in the calculation and assessment of annual average soil loss from an upland forested subwatershed in the Baram river basin using the Revised Universal Soil Loss Equation (RUSLE). The four cover management factor maps generated by this analysis show some variation among the results. The LULC method uses a single arbitrary value for each LULC type mapped in the subwatershed. The other three methods show a range of C values within each mapped LULC type. The effects of these variations were tested in the RUSLE by keeping the factors such as rainfall erosivity (R), soil erodibility (K), slope-length and steepness (LS) constant. The maximum annual average soil loss is 1191 t. ha?1. y?1 based on the CLULC. Soil losses estimated with other three methods are very different compared to those estimated with the CLULC method. The highest calculated soil loss values were 1832, 1674 and 1608 t. ha?1. y?1 in the study area based, respectively, on CNDVI1, CNDVI2 and CMSAVI2 C factors. These maximum values represent the worst pixel scenario values of soil loss in the region. The statistical analysis performed indicates different relationship between the parameters and suggests the acceptance of the methodology based on CNDVI2 for the study area, instead of a single value method such as CLULC. Among the other two methods, the CMSAVI2 was found to be more consistent than the CNDVI1 method, but both methods lead to over-prediction of annual soil loss rate and therefore need to be reconsidered before applied in the RUSLE.  相似文献   
32.
王尧  蔡运龙  潘懋 《中国地质》2014,41(5):1735-1747
本研究在GIS技术支撑下选择RUSLE模型作为基础模型,估算乌江流域20世纪80年代和90年代年均土壤侵蚀量,结合ANN技术,预测2001—2010年乌江流域的土壤侵蚀量,分析了该流域近30年来土壤侵蚀动态变化规律,以期为研究区土壤侵蚀防治工作提供理论依据。研究结果表明:应用RUSLE模型计算乌江流域年均土壤侵蚀模数,计算结果和以往土壤侵蚀调查估计的结果比较吻合,但由于RUSLE模型不计算重力侵蚀,因此计算结果仍与实测输沙模数有所出入。90年代潜在土壤侵蚀模数比80年代高,流域潜在土壤侵蚀呈增加趋势,其中三岔河流域和马蹄河/印江河流域年均潜在土壤侵蚀模数最高。3种主要土地覆被类型中,林地的土壤保持量最大,耕地次之,草地最少,这与非喀斯特地区在水土保持效果上通常林地草地旱地的结论有所不同。通过构建BP神经网络,预测得到乌江流域2001—2010年土壤侵蚀模数,结果显示,21世纪前10年,流域土壤侵蚀模数大幅降低,流域年均土壤侵蚀模数由90年代的23.13 t/(hm2·a)降低为1.01 t/(hm2·a)。三岔河流域的水土流失得到了控制,黔西、金沙、息烽、修文、贵阳、平坝、思南、石阡、沿河和松桃等县市应是"十二五"期间的水土流失重点治理对象。  相似文献   
33.
《水文科学杂志》2013,58(6):1253-1269
Abstract

Although soil erosion has been recognized worldwide as a threat to the sustainability of natural ecosystems, its quantification presents one of the greatest challenges in natural resources and environmental planning. Precise modelling of soil erosion and sediment yield is particularly difficult, as soil erosion is a highly dynamic process at the spatial scale. The main objective of this study was to simulate soil erosion and sediment yield using two fundamentally different approaches: empirical and process-oriented. The revised form of the Universal Soil Loss Equation (RUSLE), along with a sediment delivery distributed model (SEDD) and the Modified Universal Soil Loss Equation (MUSLE), which are popular empirical models, were applied in a sub-basin of the Mun River basin, Thailand. The results obtained from the RUSLE/SEDD and MUSLE models were compared with those obtained from a process-oriented soil erosion and sediment transport model. The latter method involves spatial disaggregation of the catchment into homogeneous grid cells to capture the catchment heterogeneity. A GIS technique was used for the spatial discretization of the catchment and to derive the physical parameters related to erosion in the grid cells. The simulated outcomes from the process-oriented model were found to be closer to observations as compared to the outcomes of the empirical approaches.  相似文献   
34.
黑龙江典型黑土区土壤侵蚀遥感监测技术研究   总被引:1,自引:0,他引:1  
杨佳佳  白磊  吴嵩 《地质与资源》2019,28(2):193-199
以遥感和GIS技术为支撑,利用修正后的通用土壤流失方程RUSLE为评价模型,对黑龙江省绥化市2003、2015年的土壤侵蚀量进行了计算,并结合水土流失强度分级标准,生成了黑龙江省绥化市水土流失强度分布图.在此基础上,对黑龙江省绥化市2003、2015年的水土流失现状、空间分布及2003~2015年水土流失的变化及原因进行了分析.结果表明:从2003~2015年间,水土保持措施增加,土壤侵蚀状况有向好的趋势.从统计结果看出,强度、极强度侵蚀面积比例减少,相对的轻度和微度的侵蚀面积增加.2015年,强度侵蚀等级水土流失面积相比2003年减少522.75 km2,轻度侵蚀增长近1000 km2.  相似文献   
35.
怡凯  王诗阳  王雪  姚洪莉 《地理科学》2015,35(3):365-372
以数字高程模型(DEM)、降雨量、土壤、遥感影像等为基础数据,运用GIS与遥感技术,结合RUSLE模型研究辽宁省朝阳市2001~2010 年的土壤侵蚀时空分异特征。研究结果如下:① 2001~2010 年土壤侵蚀模数总体呈下降趋势,其中2009 年的平均土壤侵蚀模数为254.02 t·hm-2·a-1,为10 a 间最低值;② 微度土壤侵蚀面积总体呈上升趋势,但以上2 个指标在2010 年均出现了不同程度的反弹;③ 朝阳县是土壤侵蚀最严重的地区,土壤侵蚀模数的平均值最高,为747.33 t·hm-2·a-1,中度以上土壤侵蚀面积分别为29.2%、32.67%、34.57%、31.41%。  相似文献   
36.
Sediment yields from natural gas well sites in Denton County, TX, USA can be substantial and warrant consideration of appropriate erosion and sediment control best management practices (BMPs). Version 2 of the revised universal soil loss equation (RUSLE 2.0) was used to predict sediment yields and evaluate the efficiency of BMPs for multiple combinations of different land surface conditions (soil erodibility and slope) commonly found at gas well sites in the area. Annual average sediment yield predictions from unprotected site conditions ranged from 12.1 to 134.5 tonnes per hectare per year (t/ha/yr). Sediment yield predictions for 1, 2, 5, and 10-year design storms ranged from 8.1 to 20.6 t/ha. When site conditions were modeled with BMPs, predicted sediment yields were 52–93% less. A comparison of modeled efficiency values to a review of laboratory and field data suggests that modeled (theoretical) sediment yield results with BMPs are likely best case scenarios. This study also evaluated BMPs in the context of site management goals and implementation cost, demonstrating a practical approach for the application of RUSLE 2.0 for managing soil loss and understanding the importance of selecting appropriate site-specific BMPs for disturbed site conditions.  相似文献   
37.
In the analysis of soil loss equation, the researchers have suggested two methods of deriving the slope steepness parameter. One method is having percentage slope term, while the other method is having sinθ as its term. In this paper, both the methods were analysed and compared in soil loss computation using Revised Universal Soil Loss Equation, over a Gangapur catchment area in India, having steep slopes. The soil loss rates derived were 0.98 million tonnes per year in case of steepness parameter derived by sinθ and 1.226 million tonnes per year in case of steepness parameter derived by percentage slope term. The observed rate of soil loss is 1.23 million tonnes per year. This methodology of soil loss estimation was also validated with similar catchment of Punegaon dam. It is concluded that for medium to steep terrain, percentage slope method estimates more accurate soil loss than other empirical methods for slope steepness estimation.  相似文献   
38.
P. I. A. Kinnell 《水文研究》2015,29(6):1397-1405
Soil erodibilities (K) associated with the EI30 index vary not only with soil properties but also with soil moisture as it varies in time and space. In Revised Universal Soil Loss Equation Version 2 (RUSLE2), temporal variations in soil erodibility in the USA are calculated using monthly precipitation and temperature as independent variables. KUM, the soil erodibility factor associated with the QREI30 index, varies independently of runoff and the product of KUM and the runoff ratio for the unit plot (QR1) provides an alternative to the temporally varying Ks currently used in predicting storm soil loss in RUSLE2. Comparisons were made between the product of QR1 and KUM and RUSLE2 Ks for representative storms at four locations representing the north to south variation in climate in the USA. Peak erosion associated with the current approach used in RUSLE2 was slightly higher at two locations and slightly lower at the other two locations. One other location, Morris, MN, provided an exception with the peak loss predicted by using the product of QR1 and KUM being 1.7 times that obtained using RUSLE2 Ks. In theory, average annual KUM values should be better related to soil properties than the average annual values of K frequently used when the average annual values of EI30 are used to predict soil loss. However, work has yet to be performed to determine how KUM varies directly with soil properties and in space and time. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
39.
In China,many scenic and tourism areas are suffering from the urbanization that results from physical development of tourism projects,leading to the removal of the vegetative cover,the creation of areas impermeable to water,in-stream modifications,and other problems. In this paper,the risk of soil erosion and its ecological risks in the West Lake Scenic Spots (WLSS) area were quantitatively evaluated by integrating the revised universal soil loss equation (RUSLE) with a digital elevation model (DEM) and geographical information system (GIS) software. The standard RUSLE factors were modified to account for local climatic and topographic characteristics reflected in the DEM maps,and for the soil types and vegetation cover types. An interface was created between the Arcinfo software and RUSLE so that the level of soil erosion and its ecological risk in the WLSS area could be mapped immediately once the model factors were defined for the area. The results from an analysis using the Arcinfo-RUSLE interface showed that the risk value in 93 % of the expanding western part of the WLSS area was moderate or more severe and the soil erosion risk in this area was thus large compared with that in the rest of the area. This paper mainly aimed to increase the awareness of the soil erosion risk in urbanizing areas and suggest that the local governments should consider the probable ecological risk resulting from soil erosion when enlarging and developing tourism areas.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号