首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   409篇
  免费   21篇
  国内免费   46篇
测绘学   15篇
大气科学   12篇
地球物理   228篇
地质学   74篇
海洋学   110篇
天文学   1篇
综合类   4篇
自然地理   32篇
  2023年   3篇
  2022年   5篇
  2021年   11篇
  2020年   8篇
  2019年   12篇
  2018年   12篇
  2017年   7篇
  2016年   9篇
  2015年   8篇
  2014年   15篇
  2013年   24篇
  2012年   7篇
  2011年   16篇
  2010年   15篇
  2009年   32篇
  2008年   25篇
  2007年   25篇
  2006年   22篇
  2005年   26篇
  2004年   13篇
  2003年   17篇
  2002年   19篇
  2001年   13篇
  2000年   14篇
  1999年   20篇
  1998年   10篇
  1997年   7篇
  1996年   8篇
  1995年   6篇
  1994年   9篇
  1993年   6篇
  1992年   8篇
  1991年   7篇
  1990年   10篇
  1989年   8篇
  1988年   1篇
  1987年   5篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1978年   1篇
  1977年   1篇
排序方式: 共有476条查询结果,搜索用时 15 毫秒
11.
The preliminary study of streams and rivers from the Roşia Montană area revealed that the concntration of heavy metals— Cd, Mn, Cu, Pb, and Zn—are above accepted limits. The gold extraction method is based on flotation. The most important pollution sources are mine tailings. The determinations were performed for samples collected in: April 2004, July 2004, September 2004, November 2004, February 2005 and May 2005. The highest concentrations were found for cadmium in September 2004: 0.17 mg/L; for copper in September 2004: 1.38 mg/L; for manganese in July 2004: 239.4 mg/L; for lead in May 2005: 0.54 mg/L; and for zinc in September 2004: 35.37 mg/L;. This study involved three small rivers (streams) that flow into the Mureş River and finally into the Danube River, having a great impact on human health and environmental stability in the area. In May 2005, a sample of drinking water from the mining district was also collected.  相似文献   
12.
Salinity has a major effect on water users in the Colorado River Basin, estimated to cause almost $300 million per year in economic damages. The Colorado River Basin Salinity Control Program implements and manages projects to reduce salinity loads, investing millions of dollars per year in irrigation upgrades, canal projects, and other mitigation strategies. To inform and improve mitigation efforts, there is a need to better understand sources of salinity to streams and how salinity has changed over time. This study explores salinity in the baseflow fraction of streamflow, assessing whether groundwater is a significant contributor of dissolved solids to streams in the Upper Colorado River Basin (UCRB). Chemical hydrograph separation was used to estimate baseflow discharge and baseflow dissolved solids loads at stream gages (n = 69) across the UCRB. On average, it is estimated that 89% of dissolved solids loads originate from the baseflow fraction of streamflow, indicating that subsurface transport processes play a dominant role in delivering dissolved solids to streams in the UCRB. A statistical trend analysis using weighted regressions on time, discharge, and season was used to evaluate changes in baseflow dissolved solids loads in streams (n = 27) from 1986 to 2011. Decreasing trends in baseflow dissolved solids loads were observed at 63% of streams. At the three most downstream sites, Green River at Green River, UT, Colorado River at Cisco, UT, and the San Juan River near Bluff, UT, baseflow dissolved solids loads decreased by a combined 823,000 metric tons (mT), which is approximately 69% of projected basin‐scale decreases in total dissolved solids loads as a result of salinity control efforts. Decreasing trends in baseflow dissolved solids loads suggest that salinity mitigation projects, landscape changes, and/or climate are reducing dissolved solids transported to streams through the subsurface. Notably, the pace and extent of decreases in baseflow dissolved solids loads declined during the most recent decade; average decreasing loads during the 2000s (28,200 mT) were only 54% of average decreasing loads in the 1990s (51,700 mT).  相似文献   
13.
龚磊  王新峰  宋绵  张涛  吴玺 《地球学报》2018,39(5):587-592
本文聚焦于反映地下水宏量离子组分总量的溶解性总固体,应用统计描述、相关分析法、离子比例法分析了其在兴国县全境的分布演化规律。结果表明,兴国县89.8%采样点的溶解性总固体含量都处于200 mg/L以内,但存在空间分布差异显著,在松散岩类孔隙水、碎屑岩类孔隙裂隙水、变质岩类裂隙水和花岗岩类裂隙水中溶解性总固体的变异系数分别为0.37、0.77、0.56和0.59。对1977—2018年两期地下水水质数据分析,兴国县地下水中溶解性总固体不论是单点极值还是均值,均呈现大幅增加的趋势,其含量增幅在24.23%~458.13%之间。在空间分布上,溶解性总固体分布与高程具有较好的相关性,高溶解性总固体的地下水普遍分布在400 m高程以下。兴国县对地下水开发的增加,改变了地下水的补径排条件,加速了地下水与围岩和岩石矿物风化组分间的溶滤和离子交换,使Na+浓度减少,Ca~(2+)和Mg~(2+)含量增加。  相似文献   
14.
To accurately evaluate ecological risks trigged by groundwater exploitation, it must be clarified the relationship between vegetation and groundwater. Based on remote sensing data sets MOD13Q1, groundwater table depth (WTD) and total dissolved solids (TDS), the relationship between groundwater and natural vegetation was analyzed statistically in the main plain areas of Qaidam Basin. The results indicate that natural vegetation is groundwater-dependent in areas where WTD is less than 5.5 m and TDS is less than 7.5 g/L. Aquatic vegetation, hygrophytic vegetation and hygrophytic saline-alkali tolerant vegetation are mainly distributed in areas with WTD <1.1 m. Salt-tolerant and mesophytic vegetation mainly occur in areas with WTD of 1.4-3.5 m, while the xerophytic vegetation isprimarily present in areas where WTD ranges from 1.4 m to 5.5 m. Natural vegetation does not necessarily depend on groundwater in areas with WTD >5.5 m. For natural vegetation, the most suitable water TDS is less than 1.5 g/L, the moderately suitable TDS is 1.5-5.0 g/L, the basically suitable TDS is 5.0-7.5 g/L, and the unsuitable TDS is more than 7.5 g/L.  相似文献   
15.
This paper reports the results of continuous monitoring of turbidity, water depth, salinity (using an Optical Backscatter Sensor (OBS)), and current velocity (using a Current meter (SLC9-2)) in the South Passage of the Changjiang Estuary over a spring–neap period in February 2003 (dry season). The turbidity measured via OBS was closely correlated with the suspended sediment concentration (SSC), which was highly variable. Over the study period, the SSC in the middle layer ranged from 110 to 1400 mg/l. The minimum SSC occurred during a late ebb tide, and the maximum SSC occurred during a late flood tide. On average, the SSC was 1.5 times higher during flood tide than during ebb tide. Vertically within the water column, SSC increased downward, with the ratio of SSC measured near the bed to that measured at the surface ranging from 1.90 to 18.3. The temporal variability in SSC is jointly governed by tides and wind-induced waves, whereas the vertical variability in SSC is attributed to the effect of gravity and vertical water circulation.  相似文献   
16.
The sensitivity of the suspended sediment flux is tested with respect to rapid changes in bed-level across the surf zone of a sandy beach. The suspended flux was computed using a fixed instrument array, but bed-level changes due to ripple migration caused the instrument elevations to be significantly changed during the course of the experiment. The nominal elevations of the instruments were adjusted during data processing (using the MOBS array) to maintain a fixed elevation with respect to bed-level changes. The resultant suspended sediment concentrations and fluxes were significantly different from the unadjusted data, and for the present data set O(35%) less when averaged over the tide. The maximum difference between adjusted and unadjusted fluxes may be O(260%). The results indicate that changes in bed-level, particularly those due to bedform migration, must be accounted for when processing OBS data if reliable estimates of suspended sediment transport are to be obtained in the field.  相似文献   
17.
New laboratory and field data are presented on fluid advection into the swash zone. The data illustrate the region of the inner surf zone from which sediment can be directly advected into the swash zone during a single uprush, which is termed the advection length. Experiments were conducted by particle tracking in a Lagrangian reference frame, and were performed for monochromatic breaking waves, solitary bores, non-breaking solitary waves and field conditions. The advection length is normalised by the run-up length to give an advection ratio, A, and different advection ratios are identified on the basis of the experimental data. The data show that fluid enters the swash zone from a region of the inner surf zone that can extend a distance seaward of the bore collapse location that is approximately equal to half of the run-up length. This region is about eight times wider than the region predicted by the classical swash solution of Shen and Meyer [Shen, M.C., Meyer, R.E., 1963. Climb of a bore on a beach. Part 3. Runup. Journal of Fluid Mechanics 16, 113–125], as illustrated by Pritchard and Hogg [Pritchard, D., Hogg, A.J., 2005. On the transport of suspended sediment by a swash event on a plane beach. Coastal Engineering 52, 1–23]. Measured advection ratios for periodic waves show no significant trend with Iribarren number, consistent with self-similarity in typical swash flows. The data are compared to recent characteristic solutions of the non-linear shallow water wave (NLSW) equations and both finite difference and finite volume solutions of the NLSW equations.  相似文献   
18.
1 INTRODUCTION The particle size of sediment eroded from basins can provide basic information about erosion processes (Meyer et al., 1980), which can be divided into sheet wash sediment processes on hill slopes and fluvial sediment processes in rivers. In…  相似文献   
19.
On 25th January 2019, the tailings dam of the Brumadinho iron mine operated by Vale S/A failed catastrophically. The death toll stood at 259 and 11 people remained missing as of January 2020. This tragedy occurred three years after Mariana’s tailings dam rupture – the most significant tailing dam disaster in Brazilian history. Thus far, a systematic investigation on the cause and effect of the failure has yet to be conducted. Here, we use satellite-driven soil moisture index, multispectral high-resolution imagery and Interferometric Synthetic Aperture Radar (InSAR) products to assess pre-disaster scenarios and the direct causes of the tailings dam collapse. A decreasing trend in the moisture content at the surface and the full evanescence of pond water through time (2011–2019) suggest that the water was gradually penetrating the fill downwards and caused the seepage erosion, saturating the tailings dam. Large-scale slumping of the dam (extensional failure) upon the rupture indicates that the materials of the fill were already saturated. InSAR measurements reveal a dramatic, up to 30 cm subsidence in the dam (at the rear part) within the past 12 months before the dam collapse, signifying that the sediments had been removed from the fill. Although the information on the resistance level of the tailings dam to infiltrations is not available, these pieces of evidence collectively indicate that the seepage erosion (piping) is the primary cause for the chronic weakening of the structure and, hence, the internal “liquefaction” condition. Upon the collapse, the fully saturated mud tailings flowed down the gentle slope area (3.13 × 106 m2), where 73 % were originally covered by tree, grass or agricultural tracts. The toxic mud eventually reached the Paraopeba River after travelling 10 km, abruptly increasing the suspended particulate matter (SPM) concentration and the toxic chemical elements in the river, immediately affecting the local livelihoods that depend on its water. The Paraopeba River is a major tributary of the San Francisco River, the second-longest river in Brazil reaching the Atlantic Ocean. We anticipate that the environmental repercussions of this toxic seepage will be felt throughout the entire basin, especially riverine communities located downstream.  相似文献   
20.
钟翼  许建新  韩积斌  徐凯 《盐湖研究》2020,28(1):112-122
为了解阿拉尔河悬浮物对铀的吸附特性,通过静态吸附实验,研究了吸附时间、pH值、温度和铀初始浓度等因素对模拟含铀水中U(VI)去除率的影响,并从热力学和动力学方面对吸附过程进行了分析。结果表明,在T=25℃,溶液初始pH=7,接触时间为16 h时,悬浮物对铀的平衡吸附率最佳,为95.48%。随着铀初始浓度的增加,吸附量增加,但吸附率随之下降,升高温度有利于铀的吸附。铀在悬浮物上的吸附过程符合Langmuir等温吸附方程,说明悬浮物对铀为单分子层吸附,且化学吸附占主导地位。吸附动力学过程可用准二级吸附动力学模型描述,表明吸附主要受动力学控制,由两个以上步骤共同控制。FTIR和EDS分析结果表明,吸附过程中铀主要与悬浮物表面活性基团螯合并以表面络合吸附为主。吸附前后的能谱对比分析表明,吸附过程中存在离子交换行为。因此,悬浮物对铀的吸附机理是以表面络合吸附和离子交换为主、物理吸附为辅的混合吸附过程。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号