首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   159篇
  免费   22篇
  国内免费   14篇
测绘学   1篇
大气科学   1篇
地球物理   32篇
地质学   44篇
海洋学   53篇
综合类   9篇
自然地理   55篇
  2024年   2篇
  2023年   2篇
  2021年   5篇
  2020年   6篇
  2019年   6篇
  2018年   6篇
  2017年   5篇
  2016年   6篇
  2015年   5篇
  2014年   12篇
  2013年   10篇
  2012年   6篇
  2011年   7篇
  2010年   9篇
  2009年   13篇
  2008年   10篇
  2007年   16篇
  2006年   2篇
  2005年   6篇
  2004年   16篇
  2003年   7篇
  2002年   8篇
  2001年   3篇
  2000年   5篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1996年   5篇
  1995年   4篇
  1994年   4篇
  1992年   1篇
  1990年   1篇
  1988年   1篇
排序方式: 共有195条查询结果,搜索用时 15 毫秒
51.
52.
53.
I. Sobota 《Polar Science》2011,5(3):327-336
This study examines the mass balance, accumulation, melt, and near-surface ice thermal structure of Irenebreen, a 4.1 km2 glacier located in northwest Spitsbergen, Svalbard. Traditional glaciological mass balance measurements by stake readings and snow surveying have been conducted annually at the glacier since 2002, yielding a mean annual net mass balance of −65 cm w.e. for the period 2002–2009. In 2009, the annual mass balance of Irenebreen was −63 cm w.e. despite above-average snow accumulation in winter. The near-surface ice temperature in the accumulation area was investigated with automatic borehole thermistors. The mean annual surface ice temperatures (September–August) of the accumulation area were −3.7 °C at 1 m depth and −3.3 °C at 10 m depth. Irenebreen is potentially polythermal, with cold ice and a temperate surface layer during summer. This temperate surface layer is influenced by seasonal changes in temperature. In winter, the temperature of all the ice is below the melting point and temperate layers are probably present in basal sections of the glacier. This supposition is supported by the presence of icings in the forefield of Irenebreen.  相似文献   
54.
The distribution of organic carbon and its relationship to vegetation development were examined on a glacier foreland near Ny-Ålesund, Svalbard (79°N). In a 0.72-km2 area, we established 43 study plots on three line transects along primary succession from recently deglaciated area to old well-vegetated area. At each plot, we measured the type and percent coverage of vegetation types. The organic carbon content of vegetation, organic soil, and mineral soil samples was determined based on their organic carbon concentration and bulk density. Cluster analysis based on vegetation coverage revealed five types of ground surfaces representing variations in the amounts and allocation patterns of organic carbon. In the later stages of succession, 7%–24% and 31%–40% of organic carbon was contained in the organic and deeper soil layers, respectively. Organic carbon storage in the later stages of succession ranged from 1.1 – 7.9 kg C m−2. A larger amount of organic carbon, including ancient carbon in a raised beach deposit, was expected to be contained in much deeper soil layers. These results suggest that both vegetation development and geological history affect ecosystem carbon storage and that a non-negligible amount of organic carbon is distributed in this High Arctic glacier foreland.  相似文献   
55.
Proterozoic granulite facies gneisses in MacRobertson Land, east Antarctica, are cut by numerous D5 mylonite-ultramylonite zones of probable Cambrian age. In garnet-absent mafic two-pyroxene gneisses and garnet-bearing charnockitic orthogneisses, the mylonite-ultramylonite zones are characterized by the growth of garnet at the expense of ilmenite, pyroxene and plagioclase. Textures within each mylonite zone can vary from protomylonitic to ultramylonitic. A range of mineral textures involving M5 garnet is developed corresponding to variations in deformation intensity. In protomylonites, garnet occurs as coronas on orthopyroxene-plagioclase and ilmenite-plagioclase boundaries, and as overgrowths on earlier garnet. In ultramylonites, fine-grained orthopyroxene-plagioclase-garnet ± quartz ± clinopyroxene intergrowths and poikilitic garnet are common. Garnet growth in all shear zones is accompanied by shifts in the compositions of neoblastic minerals occurring with garnet, consistent with local chemical equilibrium having been attained during recrystallization. Mylonitization is inferred to have occurred at P ∼ 6.5 kbar. Temperature estimates for M5 vary between 550 and 797 C, which may reflect variations and uncertainties associated with the calibrations used and/or partial re-equilibration during cooling. The presence of post-tectonic, coronate garnet in some mylonite zones indicates that garnet continued to form exclusively in the mylonite zones after movement had ceased and is interpreted to reflect the effects of localized strain heating.  相似文献   
56.
Kongsvegen, a surge‐type glacier in Spitsbergen, Svalbard, shares a tide‐water margin with the glacier Kronebreen. The complex has been in retreat since a surge advance of Kongsvegen around 1948. The surface of Kongsvegen displays suites of deformational structures highlighted by debris‐rich folia. These structures are melting out to form a network of sediment ridges in the grounded terminal area. The structures are also visible in a marginal, 1 km long, 5–20 m high cliff‐face at the terminus. Current models for the evolution of deformational structures at Kongsvegen divide the structures into suites based on their orientation and dip, before assigning a mechanism for genesis based on structure geometry. Interpretation of aerial photographs and field mapping of surface structures suggest that many structures were reorientated or advected during the surge. We suggest that many of the deformational structures highlighted by debris‐rich folia represent reorientated, sediment‐filled crevasses. Some evidence of thrusting is apparent but the process is not as ubiquitous as previously suggested. Many deformational structures also appear to have been offset by more recent structures. Mechanisms of structural development must, therefore, be considered within the context of distinct stages of glacier flow dynamics and multiple surge episodes. Furthermore, evidence for thrusting and folding within the glacier systems of Svalbard has been used as the basis for interpreting Quaternary glacial landforms in the UK. The findings of this paper, therefore, have implications for interpretations of the Quaternary record. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
57.
Turbid meltwater plumes and ice‐proximal fans occur where subglacial streams reach the grounded marine margins of modern and ancient tidewater glaciers. However, the spacing and temporal stability of these subglacial channels is poorly understood. This has significant implications for understanding the geometry and distribution of Quaternary and ancient ice‐proximal fans that can form important aquifers and hydrocarbon reservoirs. Remote‐sensing and numerical‐modelling techniques are applied to the 200 km long marine margin of a Svalbard ice cap, Austfonna, to quantify turbid meltwater‐plume distribution and predict its temporal stability. Results are combined with observations from geophysical data close to the modern ice front to refine existing depositional models for ice‐proximal fans. Plumes are spaced ca 3 km apart and their distribution along the ice front is stable over decades. Numerical modelling also predicts the drainage pattern and meltwater discharge beneath the ice cap; modelled water‐routing patterns are in reasonable agreement with satellite‐mapped plume locations. However, glacial retreat of several kilometres over the past 40 years has limited build‐up of significant ice‐proximal fans. A single fan and moraine ridge is noted from marine‐geophysical surveys. Closer to the ice front there are smaller recessional moraines and polygonal sediment lobes but no identifiable fans. Schematic models of ice‐proximal deposits represent varying glacier‐terminus stability: (i) stable terminus where meltwater sedimentation produces an ice‐proximal fan; (ii) quasi‐stable terminus, where glacier readvance pushes or thrusts up ice‐proximal deposits into a morainal bank; and (iii) retreating terminus, with short still‐stands, allowing only small sediment lobes to build up at melt‐stream portals. These modern investigations are complemented with outcrop and subsurface observations and numerical modelling of an ancient, Ordovician glacial system. Thick turbidite successions and large fans in the Late Ordovician suggest either high‐magnitude events or sustained high discharge, consistent with a relatively mild palaeo‐glacial setting for the former North African ice sheet.  相似文献   
58.
Snow cornices grow extensively on leeward edges of plateau mountains in central Svalbard. A dominant wind direction, a snowdrift source area and a sharp slope transition largely control the formation of snow cornices in a barren peri‐glacial landscape. Seasonal snow cornice dynamics control bedrock weathering and erosion in sedimentary bedrock on the Gruvefjellet plateau edge in the valley Longyeardalen. Air, snow and ground temperature sensors, as well as automatic time‐lapse cameras on a leeward facing plateau edge were used to study seasonal cornice dynamics. These techniques allowed for monitoring of cornice accretion, deformation and collapse/melting in great detail. The active layer of the top plateau edge is characterized by high moisture content due to rain before freeze‐up in autumn and cornice meltdown during spring thaw. Thus frost weathering there can be very efficient in this otherwise cold and dry environment. Within the first autumn snowstorms, a vertical fully developed cornice was in place (190 cm thick). The backwall surface beneath the thickest part of the cornice remained in the ice segregation ‘frost cracking window’ for almost nine months. Highly weathered rock material from the plateau edge is thus incorporated into the cornice during cornice accretion. Brittle snow deformation leads to the opening of cornice tension cracks between the cornice mass and the snowpack on the plateau. These cracks are a prerequisite for cornice collapses, and often trigger cornice fall avalanches on the slope beneath. In these open cornice tension cracks, weathered rock debris, plucked from the plateau edge, can be visible, demonstrating the erosional property of the cornices. The cornice will either collapse or melt, resulting in suspended sediment transport downslope by cornice fall avalanche or release as rock fall respectively. Therefore, cornices both promote and trigger high weathering rates on Gruvefjellet, and thus control presently the development of the rockwall free faces and the talus cones. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
59.
Deltas are commonly classified according to their plan‐view morphology as either river‐dominated, tide‐dominated or wave‐dominated. However, most deltas form under the mixed influence of these processes, commonly with laterally varying process regimes. It has also become clear that there is a mismatch between the plan‐view morphology and internal facies composition in some deltas. Combined outcrop and subsurface data from the Eocene Battfjellet Formation, Spitsbergen, provide an example of ancient shelf deltas that formed under mixed influence. Internally, these shelf deltas are characterized by wave‐dominated facies that are normally associated with strike‐extensive, nearly linear shoreline sandstones. However, the formation comprises partially overlapping sandstone bodies of limited lateral extent (<20 km in any direction). This stacking pattern is attributed to frequent autogenic lobe switching that caused localized and rapid transgressions. Such processes typify fluvial‐dominated deltas and occur less commonly in wave‐dominated ones. Thus, there is an apparent mismatch between inferred plan‐view morphology and internal facies composition. It is argued that the Battfjellet deltas were flood‐dominated and prograded mainly during periods of high fluvial discharge. However, reworking of the fluvial‐flood facies by fair‐weather and storm waves, as well as longshore currents, resulted in a wave‐dominated facies character. Delta lobes undergoing auto‐retreat were particularly prone to reworking by basinal processes, including tidal currents. It is suggested that repeated delta progradation from inner shelf settings towards the outer shelf and shelf edge was aided by high sediment supply rather than relative falls in sea‐level as previously suggested. This interpretation is supported by: (i) the lack of major facies dislocations and extensive sub‐aerial unconformities; and (ii) an overall relative rise in sea‐level as evidenced by an overall low‐angle (0·8 to 1·2°) ascending shoreline trajectory. The latter results from the combined effect of basin subsidence, eustatic highstand and sediment compaction.  相似文献   
60.
Large debris-flow units commonly occur on the distal sides of subaqueous end moraines deposited by surges of Svalbard tidewater glaciers, but have rarely been described in terrestrial settings. Some researchers have argued that these kinds of debris flows reflect processes unique to the subaqueous environment, such as the extrusion of subglacial deforming layers or extensive failure of oversteepened moraine fronts. In this paper, we describe terrestrial and subaqueous parts of a single late Holocene moraine system deposited by a major surge of the tidewater glacier Paulabreen in west Spitsbergen. The ice-marginal landforms on land closely resemble the corresponding landforms on the seabed as evidenced by geomorphic mapping and geophysical profiles from both environments. Both onland and offshore, extensive areas of hummocky moraine occur on the proximal side of the maximum glacier position, and large mud aprons (interpreted as debris flows) occur on the distal side. We show that the debris-flow sediments were pushed in front of the advancing glacier as a continuously failing, mobile push moraine. We propose that the mud aprons are end members of a proglacial landforms continuum that has thrust-block moraines as the opposite end member. Two clusters of dates (~ 8000 YBP and ~ 700 YBP) have previously been interpreted to indicate two separate surges responsible for the moraine formation. New dates suggest that the early cluster indicates a local extinction of the abounded species Chlamys islandica. Other changes corresponding to the widespread 8.2 ka event within the fjord, may suggest that the extinction of the C. islandica corresponds to that time.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号