首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70篇
  免费   0篇
地球物理   28篇
地质学   10篇
海洋学   27篇
天文学   2篇
自然地理   3篇
  2021年   1篇
  2019年   3篇
  2018年   1篇
  2014年   2篇
  2012年   1篇
  2011年   1篇
  2010年   13篇
  2009年   6篇
  2008年   7篇
  2007年   12篇
  2006年   4篇
  2005年   4篇
  2004年   2篇
  2003年   1篇
  2002年   3篇
  1999年   3篇
  1997年   3篇
  1995年   1篇
  1994年   1篇
  1985年   1篇
排序方式: 共有70条查询结果,搜索用时 15 毫秒
11.
12.
The stability of cohesive sediments from Venice lagoon has been measured in situ using the benthic flume Sea Carousel. Twenty four stations were occupied during summertime, and a sub-set of 13 stations was re-occupied during the following winter. Erosion thresholds and first-order erosion rates were estimated and showed a distinct difference between inter-tidal and sub-tidal stations. The higher values for inter-tidal stations are the result of exposure that influences consolidation, density, and organic adhesion. The thresholds for each state of sediment motion are well established. However, the rate of erosion once the erosion threshold has been exceeded has been poorly treated. This is because normally a time-series of sediment concentration (C) and bed shear stress (τ0(t)) is used to define threshold stress or cohesion (τcrit,z) and erosion rate (E). Whilst solution of the onset of erosion, τcrit,0, is often reported, the evaluation of the erosion threshold variation through the process of erosion (eroded depth) is usually omitted or not estimated. This usually leads to assumptions on the strength profile of the bed which invariably has no credibility within the topmost mm of the bed where most erosion takes place. It is possible to extract this information from a time-series through the addition of a step in data processing. This paper describes how this is done, and the impact of this on the accuracy of estimates of the excess stress (τ0(t)–τcrit,z) on E.  相似文献   
13.
Understanding the biogeochemical process of Hg is critical in the overall evaluation of the ecological impacts resulting from the reuse of Hg-contaminated dredged sediment. Sediment banks (V1 and V2) were constructed with freshly dredged sediments from a navigational channel in Venice Lagoon, Italy, with the goal of clarifying potential differences in the biogeochemistry of Hg between the reused dredged sediments and those from surrounding sites (SS1 and S2). Toward this purpose, Hg and monomethylmercury (MMHg) concentrations, and Hg methylation rates (MMRs) in the surface 2.5 cm sediments were monitored, along with ammonium, iron, sulfate and sulfide concentrations in the pore waters of banks and surrounding sites from November 2005 to February 2007. Pore water analyses indicate that the bank sediments are characterized by lower levels of sulfate and iron, and by higher levels of ammonium and sulfide compared to the surrounding sediments. With respect to Hg speciation, the fractions of MMHg in total Hg (%MMHg/Hg) and the MMRs were significantly lower in the bank V1 compared to those in the reference site SS1, whereas the %MMHg/Hg and the MMRs were similar between V2 and S2. A negative correlation is found between the logarithm of the particle-water partition coefficient of Hg and the MMR, indicating that the reduced MMRs in V1 are caused by the limited concentrations of dissolved Hg. Organic matter appears to play a key role in the control of MMR via the control of Hg solubility.  相似文献   
14.
The coastal plain bordering the southern Venice Lagoon is a reclaimed lowland characterized by high subsidence rate, and ground level and water-table depth below sea level. In this agricultural region, where the surface hydrologic network is entirely artificially controlled by irrigation/drainage canals, salinization problems have long been encountered in soils and groundwaters. Here we use isotopic and geochemical tracers to improve our understanding of the origin of salinization and mineralization of the semi-confined aquifer (0–40 m), and the freshwater inputs to this hydrological system. Water samples have been collected at different seasons in the coastal Adriatic Sea, lagoon, rivers and irrigation canals, as well as in the semi-confined aquifer at depths between 12 and 35 m (14 boreholes), and in the first confined aquifer (three boreholes drilled between 40 and 80 m depth). Stable isotopes (δ18O and δD) and conductivity profiles show that direct saline intrusion from the sea or the lagoon is observed only in a restricted coastal strip, while brackish groundwaters are found over the entire topographic and piezometric depression in the centre of the study area. Fresh groundwaters are found only in the most western zone. The sharp isotopic contrast between the western and central regions suggests disconnected hydrological circulations between these two parts of the shallow aquifer. The border between these two regions also corresponds to the limits of the most strongly subsiding zone.Our results can be interpreted in terms of a four end-member mixing scheme, involving (1) marine water from the lagoon or the open sea, (2) alpine and pre-alpine regional recharge waters carried either by the main rivers Adige, Bacchiglione and Brenta (irrigation waters) or by the regional groundwater circulation, (3) local precipitation, and (4) evaporated waters infiltrated from the surface. Infiltration from the surface is also revealed by the stratification of the electrical conductivity profiles, showing that the brackish groundwaters are overlain by a shallow layer of less saline water all over the central depression. In the first confined aquifer, the groundwaters have isotopic compositions similar to the deep groundwaters of the Venetian confined aquifers (40–400 m depth). The isotopic data and the Br/Cl ratio show that the origin of the salinization of the phreatic aquifer can be ascribed to seawater intrusion alone, with no indication of the involvement of deep brines (identified at 450 m depth) in the process.The chemical composition of the saline and brackish groundwaters is characterized by an excess of sodium and a deficit of calcium compared to conservative mixing between fresh groundwaters and seawater. This suggests that the phreatic aquifer is progressively freshening, as a consequence of the beneficial influence of the extensive irrigation/drainage network, including raised canals acting as a hydraulic barrier along the coast. This freshening tendency may have been lasting since the reclamation in the mid-twentieth century, and has probably been accelerated by the ban on groundwater abstraction since the 1970s.  相似文献   
15.
The MoSE project (construction of mobile barrier to safeguard the Lagoon of Venice) entails changes to the structure of the lagoon's inlets. This could have consequences for the areas near the inlets and for the dynamics of the lagoon ecosystem as a whole. In order to predict the effects of the proposed alterations on the hydrodynamics of the lagoon, a well-tested hydrodynamic-dispersion model was applied. Simulations were carried out considering both idealised and realistic tide and wind scenarios.  相似文献   
16.
17.
In order to understand the role of sulfate and Fe(III) reduction processes in the net production of monomethylmercury (MMHg), we amended anoxic sediment slurries collected from the Venice Lagoon, Italy, with inorganic Hg and either potential electron acceptors or metabolic byproducts of sulfate and Fe(III) reduction processes, gradually changing their concentrations. Addition of sulfide (final concentration: 0.2–6.3 mM) resulted in an exponential decrease in the sulfate reduction rate and MMHg concentration with increasing concentrations of sulfide. Based on this result, we argue that the concentration of dissolved sulfide is a critical factor controlling the sulfate reduction rate, and in turn, the net MMHg production at steady state. Addition of either Fe(II) (added concentration: 0–6.1 mM) or Fe(III) (added concentration: 0–3.5 mM) resulted in similar trends in the MMHg concentration, an increase with low levels of Fe additions and a subsequent decrease with high levels of Fe additions. The limited availability of dissolved Hg, associated with sulfide removal by precipitation of FeS, appears to inhibit the net MMHg production in high levels of Fe additions. There was a noticeable reduction in the net MMHg production in Fe(III)-amended slurries as compared to Fe(II)-amended ones, which could be caused by a decrease in the sulfate reduction rate. This agrees with the results of Hg methylation assays using the enrichment cultures of anaerobic bacteria: whereas the enrichment cultures of sulfate reducers showed significant production of MMHg (4.6% of amended Hg), those of Fe(III), Mn(IV), and nitrate reducers showed no production of MMHg. It appears that enhanced Fe(III)-reduction activities suppress the formation of MMHg in high sulfate estuarine sediments.  相似文献   
18.
Recognising the importance of understanding sediment dynamics to evaluate the status of a coastal lagoon environment, this work has been focused on the investigation of the hydrodynamic and sediment transport processes occurring in such basins. In order to describe the lagoon system, a modelling approach combining hydrodynamics, waves and sediment dynamics has been developed. The framework of the numerical model consists of a finite element hydrodynamic model, a third generation finite element spectral wave model and a sediment transport and morphodynamic model for both cohesive and non-cohesive sediments. The model adopts the finite element technique for spatial integration, which has the advantage to describe more accurately complicated bathymetry and irregular boundaries for shallow water areas. The developed model has been applied to test cases and to a very shallow tidal lagoon, the Venice Lagoon, Italy. Numerical results show good agreement with water level, waves and turbidity measurements collected in several monitoring stations inside the Lagoon of Venice. Such a model represents an indispensable tool in analysing coastal problems and assessing morphological impacts of human interference.  相似文献   
19.
20.
Eighteen short cores were analyzed for major and trace metals (Al, Fe, Ca, Mg, Mn, Si, K, Ti, Pb, Zn, Cu, Ni, Cr), 210Pb, 137Cs, and other sediment characteristics, so as to describe the chronology of pollution and calculate metal concentration factors and fluxes. Substantial evidence was found that trace metal profiles are influenced by anthropogenic sources and by changes in sediment composition. Only Zn presents concentrations (up to 13.1 μmol g) and concentration factors (1.3 to 13.2) that can be attributed to heavy contamination. Pb, Cu and Ni, in this order, are less significant. The areal distribution of concentrations and inventories reflects the importance of direct sources, in particular the industrial area of Porto Marghera and the Dese river. The inventories of excess metals, above pre-industrial levels, were determined for each core and the three different parts of the study area, the amounts of Zn accumulated in sediments are 11.0 Mmol, 5.1 Mmol and 0.37 Mmol in the Campalto, S. Erasmo, and Palude di Cona areas, respectively. Ruxes were also calculated and compared with those suggested for the atmospheric delivery by Cochran et al. [(1995)b. Atmospheric fluxes of heavy metal contaminants to the Venice Lagoon, Rapp. Comm. Int. Mer Médit., 34, 136.], the atmospheric contribution is predominant or significant in many cases, especially at sites far from the major local inputs. Concentrations and fluxes show a significant increase in the anthropogenic metal supply starting from the second decade of this century, with maximum inputs in the period between the (1930)s and the (1970)s. At some stations a decrease in heavy metal contamination of surficial sediments was found and this could be ascribed to a reduced input of pollutants in recent years.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号