首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6638篇
  免费   1349篇
  国内免费   1510篇
测绘学   489篇
大气科学   3348篇
地球物理   1233篇
地质学   1698篇
海洋学   452篇
天文学   170篇
综合类   253篇
自然地理   1854篇
  2024年   37篇
  2023年   88篇
  2022年   211篇
  2021年   310篇
  2020年   311篇
  2019年   329篇
  2018年   298篇
  2017年   345篇
  2016年   363篇
  2015年   370篇
  2014年   469篇
  2013年   841篇
  2012年   495篇
  2011年   432篇
  2010年   406篇
  2009年   478篇
  2008年   499篇
  2007年   477篇
  2006年   408篇
  2005年   357篇
  2004年   297篇
  2003年   275篇
  2002年   240篇
  2001年   193篇
  2000年   174篇
  1999年   139篇
  1998年   130篇
  1997年   132篇
  1996年   92篇
  1995年   66篇
  1994年   60篇
  1993年   40篇
  1992年   39篇
  1991年   21篇
  1990年   18篇
  1989年   12篇
  1988年   13篇
  1987年   10篇
  1986年   13篇
  1985年   4篇
  1983年   4篇
  1979年   1篇
排序方式: 共有9497条查询结果,搜索用时 453 毫秒
181.
Pb pollution has existed for several millennia and remains relevant today. By using peat cores as environmental archives it is possible to reconstruct this long history on a regional scale. This is a significant contribution to the findings from ice core records, the only other archive recording purely atmospheric additions. Without information that allows linking and comparison between sites regionally, within Europe and elsewhere, our ability to make coherent global models of the natural Pb cycle, and anthropogenic forcing of this cycle, is limited. In this respect, the characteristics of the Pb pre-pollution aerosol (PPA) are important to define globally. We characterize for the first time a PPA in Southern Europe with [Pb] = 0.78 ± 0.86 μg g− 1, net Pb accumulation rates of 0.032 ± 0.030 mg m− 2 y− 1 and a 206Pb / 207Pb signature of 1.25470 ± 0.02575. This PPA Pb isotope signature is more radiogenic than that found thus far in Western and Northern Europe. Spain is a historically important mining site. Using three-isotope plots and a pool of potential Pb isotope signatures, a detailed source appointment of both natural and anthropogenic Pb sources was made. We found evidence of Saharan aridification and its termination ∼4400 BP and/or agricultural signals and strong local control (from rock and soil) of the Pb PPA. Human impact is first recorded at 3210 BP but does not exceed 50% of deposited Pb until 3005 BP. Mines in SE Spain dominate early Pb pollution history at this site. During the rise of Roman rule, contributions come from mines in N, NW and SW Spain with no strong indication of other European mining activities. In Medieval and Industrial times local contributions to the peat bog are reduced.  相似文献   
182.
Long‐term weathering of a quartz chlorite schist via wetting and drying was studied under a simulated tropical climate. Cubic rock samples (15 mm × 15 mm × 15 mm) were cut from larger rocks and subjected to time‐compressed climatic conditions simulating the tropical wet season climate at the Ranger Uranium Mine in the Northern Territory, Australia. Fragmentation, moisture content and moisture uptake rate were monitored over 5000 cycles of wetting and drying. To determine the impact of climatic variables, five climatic regimes were simulated, varying water application, temperature and drying. One of the climatic regimes reproduced observed temperature and moisture variability at the Ranger Uranium Mine, but over a compressed time scale. It is shown that wetting and drying is capable of weathering quartz chlorite schist with changes expected over a real time period of decades. While wetting and drying alone does produce changes to rock morphology, the incorporation of temperature variation further enhances weathering rates. Although little fragmentation occurred in experiments, significant changes to internal pore structure were observed, which could potentially enhance other weathering mechanisms. Moisture variability is shown to lead to higher weathering rates than are observed when samples are subjected only to leaching. Finally, experiments were conducted on two rock samples from the same source having only subtle differences in mineralogy. The samples exhibited quite different weathering rates leading to the conclusion that our knowledge of the role of rock type and composition in weathering is insufficient for the accurate determination of weathering rates. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
183.
The retreat of valley glaciers has a dramatic effect on the stability of glaciated valleys and exerts a prolonged influence on the subsequent fluvial sediment transport regime. We have studied the evolution of an idealized glaciated valley during the period following retreat of ice using a numerical model. The model incorporates a stochastic process to represent deep‐seated landsliding, non‐linear diffusion to represent shallow landsliding and an approximation of the Bagnold relation to represent fluvial sediment transport. It was calibrated using field data from several recent surveys within British Columbia, Canada. We present ensemble model results and compare them with results from a deterministic linear‐diffusion model to show that explicit representation of large landslides is necessary to reproduce the morphology and channel network structure of a typical postglacial valley. Our model predicts a rapid rate of fluvial sediment transport following deglaciation with a subsequent gradual decline, similar to that inferred for Holocene time. We also describe how changes in the model parameters affect the estimated magnitude and duration of the paraglacial sediment pulse. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
184.
The impact of warmer climate on melt and evaporation was studied for rainfed, snowfed and glacierfed basins located in the western Himalayan region. Hydrological processes were simulated under current climatic conditions using a conceptual hydrological model, which accounts for the rainfall–runoff, evaporation losses, snow and glacier melt. After simulations of daily observed streamflow (R2=0.90) for 6 years, the model was used to study the impact of warmer climate on melt and evaporation. Based on the future projected climatic scenarios in the study region, three temperature scenarios (T+1, T+2 and T+3 °C) were adopted for quantifying the effect of warmer climate. The comparison of the effect of warmer climate on different types of basins indicated that the increase in evaporation was the maximum for snowfed basins. For a T+2 °C scenario, the annual evaporation for the rainfed basins increased by about 12%, whereas for the snowfed basins it increased by about 24%. The high increase of the evaporation losses would reduce the runoff. It was found that under a warmer climate, melt was reduced from snowfed basins, but increased from glacierfed basins. For a T+2 °C scenario, annual melt was reduced by about 18% for the studied snowfed basin, while it increased by about 33% for the glacierfed basin. Thus, impact of warmer climate on the melt from the snowfed and glacierfed basins was opposite to each other. The study suggests that out of three types of basins, snowfed basins are more sensitive in terms of reduction in water availability due to a compound effect of increase in evaporation and decrease in melt. For a complex type of basin, the decrease in melt from seasonal snow may be counterbalanced by increase in melt from glaciers. However, on long-term basis, when the areal extent of glaciers will decrease due to higher melt rate, the water availability from the complex basins will be reduced.  相似文献   
185.
This study assesses the causes of the high spatial variability of the mineral content of groundwater in crystalline bedrock of Southern Madagascar. Although many kilometres from the coast and at a mean altitude of 400 m a.s.l, wells drilled in this area produce water with electrical conductivities in the range of 300–30,000 μS cm−1 with a high spatial variability. Chemical and isotopic data are used to identify the processes involved in the groundwater mineralization. It is shown that the chemical composition of the groundwater in this region has its origin in (i) normal silicate and carbonate weathering reactions and (ii) input of marine salts, probably via rainfall recharge, modified by evapo-concentrative processes probably including precipitation and re-dissolution of secondary evaporites in the unsaturated zone. To obtain a better understanding of the spatial salinity distribution, well parameters such as yields, weathered zone thickness, weathered materials and morphological positions (upper slope, mid-slope, lower slope or valley bottom) are scrutinized.

A correlation was found between high salinity and low flow, shallow groundwater environments (flat hill tops, valley bottoms, weakly developed and clayey weathered zones) and between low salinity and high flow environments (granular, well-developed weathered zones and situation on valley slopes).  相似文献   

186.
南半球对流层气候年代际变化及其与太阳活动的联系   总被引:7,自引:0,他引:7  
通过南半球对流层温度场谱分析和逐次滤波分析发现,南半球对流层大气温度场半个多世纪以来呈现明显的持续升温趋势,升温幅度由低层到高层逐步增加,其中地面层1 000 hPa年升温率为0.013℃/a,对流层中部500 hPa年升温率为0.019℃/ a,对流层上部300 hPa年升温率为0.036℃/ a;滤除南半球大气温度场的趋势变化,发现南半球大气温度场从地面层直至对流层顶广泛盛行着十分显著的与太阳磁场磁性22年周期变化相一致的变化周期。太阳磁场磁性周期变化趋势略有超前,分析认为,这是南半球对流层大气气候系统对太阳磁场周期性变化的响应。进一步分析还发现,南半球从地面层1 000 hPa到对流层顶,再到平流层中部10 hPa各层次大气温度变化22年周期分量振荡位相基本一致,周期振幅由低层到高层迅速增大,说明太阳磁场变化对对流层高层比低层影响大,对平流层影响更大。其中地面层1 000 hPa温度场的22年变化周期是在滤除趋势变化和11年周期之后才显现出来的,所以太阳磁场磁性周期变化对地面层气候的影响较小并且经常处于被掩盖状态;南半球地面层1 000 hPa温度场滤除趋势变化之后显示出十分显著的与太阳活动11年周期相一致的变化周期,分析认为,这是南半球对流层大气气候系统对太阳活动11周期性变化的响应。对流层上层300 hPa温度场滤除趋势变化和22年周期之后也显示出11年变化周期,而对流层中部500 hPa则无此周期反应,说明太阳活动11年周期对地面层1 000 hPa大气气候影响最明显,对流层中上层影响较弱。  相似文献   
187.
The EPIC (Erosion Productivity Impact Calculator) crop model, developed by scientists of the United States Department of Agriculture (USDA), has been successfully applied to the study of erosion, water pollution, crop growth and production in the US but is yet to be introduced for serious research purposes in other countries or regions. This paper reports on the applicability of the EPIC 8120 crop model for the assessment of the potential impacts of climate variability and climate change on crop productivity in sub‐Saharan West Africa, using Nigeria as the case study. Among the crops whose productivity has been successfully simulated with this model are five of West Africa's staple food crops: maize, millet, sorghum (guinea corn), rice and cassava. Thus, using the model, the sensitivities of maize, sorghum and millet to seasonal rainfall were demonstrated with coefficients of correlation significant at over 98 per cent confidence limits. The validation tests were based on a comparison of the observed and the model‐generated yields of rice and maize. The main problems of validation relate to the multiplicity of crop varieties with contrasting performances under similar field conditions. There are also the difficulties in representing micro‐environments in the model. Thus, some gaps appear between the observed and the simulated yields, arising from data or model deficiencies, or both. Based on the results of the sensitivity and validation tests, the EPIC crop model could be satisfactorily employed in assessing the impacts of and adaptations to climate variability and climate change. Its use for the estimation of production and the assessment of vulnerabilities need to be pursued with further field surveys and field experimentation.  相似文献   
188.
Yong Zha  Jay Gao  Ying Zhang 《Area》2005,37(3):332-340
Situated in a climatically stressful environment, alpine grassland is sensitive to subtle climate changes in its productivity. We remedy the current deficiency in studying grassland productivity by taking the integrated effect of all relevant factors into consideration. The relative importance of temperature, rainfall and evaporation to the alpine grassland productivity in western China was determined through analysis of their relationship with the normalized difference vegetation index (NDVI) between 1981 and 2000. Climate warming stimulated grassland productivity in the 1980s, but hampered it in the 1990s. Temperature is more important than rainfall to grassland productivity early in the growing season. However, their relative importance is reversed late in the growing season. Monthly summer month rainfall modified by maximum monthly temperature is a good predictor of alpine grassland productivity at 62.0 per cent. However, the best predictor is water deficiency, which is able to improve the estimation accuracy to 78.3 per cent. Hence, the impact of temperature on grassland productivity is better studied indirectly through evaporation.  相似文献   
189.
ABSTRACT. Two well dated Holocene sediment records bordering the Denmark Strait region have been used to reconstruct past climate variability. The content of biogenic silica, classic and organic material and moss in a lacustrine record from Lake N14 has been used to infer past variability in precipitation and temperature in southern Greenland. Sedimentologic and petrologic composition of sand in a shelf sediment record from the Djúpáll trough is used to infer past variability in the northwestern storm activity on northwestern Iceland, which probably also affected the inflow of polar waters from the East Greenland Current. Our evaluation of these records with a number of previous studies from the region documents Holocene climatic optimum conditions peaking between 8000 and 6500 calendar years before present (cal yr BP). Mid-Holocene climate deterioration set in around 5000 cal yr BP followed by a further marked setback around 3500 cal yr BP. A stacking of climate variability on a centennial timescale from previous studies in the area shows a fairly good correspondence to the timing of marked cold and warm events as evidenced from the Lake N14 and the Djúpáll trough records. Cooler periods are explained as the response to marked incursions of ice-laden polar water from the Arctic Ocean to the Denmark Strait region. Cool northerly and northwesterly winds along the East Greenland coast in relation to frequent strong atmospheric low pressure in the Barents Sea, coupled with strong high pressure over Greenland, would have favoured southward export of polar waters. A comparison with the proxy records of nuclide production (14C and 10Be) suggests that solar activity may have had some influence on the atmospheric pressure distribution in the Denmark Strait region.  相似文献   
190.
Late Quaternary alluvial induration has greatly influenced contemporary channel morphology on the anabranching Gilbert River in the monsoon tropics of the Gulf of Carpentaria. The Gilbert, one of a number of rivers in this region, has contributed to an extensive system of coalescing low-gradient and partly indurated riverine plains. Extensive channel sands were deposited by enhanced flow conditions during marine oxygen isotope (OI) Stage 5. Subsequent flow declined, probably associated with increased aridity, however, enhanced runoff recurred again in OI Stages 4–3 (65–50 ka). Aridity then capped these plains with 4–7 m of mud. A widespread network of sandy distributary channels was incised into this muddy surface from sometime after the Last Glacial Maximum (LGM) to the mid Holocene during a fluvial episode more active than the present but less so than those of OI Stages 5 and 3. This network is still partly active but with channel avulsion and abandonment now occurring largely proximal to the main Gilbert flow path.A tropical climate and reactive catchment lithology have enhanced chemical weathering and lithification of alluvium along the river resulting in the formation of small rapids, waterfalls and inset gorges, features characteristic more of bedrock than alluvial systems. Thermoluminescence (TL) and comparative optically stimulated luminescence (OSL) ages of the sediments are presented along with U/Th ages of pedogenic calcrete and Fe/Mn oxyhydroxide/ oxide accumulations. They show that calcrete precipitated during the Late Quaternary at times similar to those that favoured ferricrete formation, possibly because of an alternating wet–dry climate. Intense chemical alteration of the alluvium leading to induration appears to have prevailed for much of the Late Quaternary but, probably due to exceptional dryness, not during the LGM. The result has been restricted channel migration and a reduced capacity for the channel to adjust and accommodate sudden changes in bedload. Consequent avulsions have caused local stream powers to increase by an order of magnitude, inducing knickpoint erosion, local incision and the sudden influx of additional bedload that has triggered further avulsions. The Gilbert River, while less energetic than its Pleistocene ancestors, is clearly an avulsive system, and emphasizes the importance in some tropical rivers of alluvial induration for reinforcing the banks, generating nickpoints, reworking sediment and thereby developing and maintaining an indurated and anabranching river style.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号