首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   267篇
  免费   69篇
  国内免费   13篇
测绘学   3篇
大气科学   2篇
地球物理   173篇
地质学   32篇
海洋学   16篇
综合类   2篇
自然地理   121篇
  2023年   1篇
  2022年   2篇
  2021年   9篇
  2020年   23篇
  2019年   13篇
  2018年   15篇
  2017年   13篇
  2016年   19篇
  2015年   18篇
  2014年   25篇
  2013年   33篇
  2012年   22篇
  2011年   10篇
  2010年   17篇
  2009年   19篇
  2008年   12篇
  2007年   17篇
  2006年   21篇
  2005年   8篇
  2004年   9篇
  2003年   8篇
  2002年   7篇
  2001年   7篇
  2000年   5篇
  1999年   5篇
  1998年   2篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1990年   2篇
  1989年   1篇
排序方式: 共有349条查询结果,搜索用时 31 毫秒
321.
Using data from three field surveys along a precipitation gradient of temperate grasslands in north-east China (the Northeast China Transect, NECT) and south-east Mongolia, the spatial distribution of six plant functional types (PFTs): C3 species, C4 species, grasses, shrubs, forbs and succulents and their relationships with climate were analysed. The spatial distribution of different PFTs varies in different regions and in different grassland types of the study area. The species richness in each PFT also has different relationships with climate (significantly or not). Generally, the number of C3 species, C4 species, grasses and forbs have positive relationships with precipitation and aridity. Shrubs have negative relationship with precipitation and aridity. Succulents were found to have no relationship with precipitation and aridity. Shrubs, grasses and forbs have stronger relationships with precipitation than C3 and C4 species. The relationships between C3 species, forbs and aridity are more significant than with precipitation. On a regional basis, the combined effect of precipitation and temperature, the aridity, is more significantly correlated with the distribution of C3 species and forbs, which are more dominant in the study area, than with C4 species, grasses and succulents.  相似文献   
322.
Encroachment of the shrub Prosopis glandulosa Torr. (honey mesquite) into semi-arid grasslands is a serious concern in the south-western United States, yet little is known about the long-term dynamics of the invasion process. We used ten high-resolution aerial and satellite images taken from 1936 to 1996 to track the population dynamics and spatial pattern of all P. glandulosa greater than 2 m in diameter on a 75 ha area in southern New Mexico.Shrub cover and patch numbers increased from 1936 to the 1970s, then stabilized at 43% cover and 83 patches ha−1. Individual patches were extremely persistent: 95% of the area occupied by shrub patches in 1936 was still occupied in 1996. Recruitment into the 2 m size class was more variable: 0·6–5·2% year−1 (mean 0·8% year−1). Patch-shape complexity increased from 1936 to 1983 as adjacent shrubs merged, and then declined as those clusters filled in and became rounder. Spatial pattern of shrubs showed a distinct trend over time: strongly clustered in 1936 at lag distances up to 250 m, then random arrangement at all scales, and by 1983 pattern was regular at lag distances greater than 100 m. There was no clear relationship with precipitation.The use of remote sensing imagery allowed us to examine one site over time, and revealed patterns in population dynamics and spatial pattern that would not have been visible otherwise. Comparison of field estimates collected in 2001 with 1996 image data suggest that the canopy cover estimates were accurate, but shrub densities were seriously underestimated in the satellite photographs, which do not show shrubs smaller than 2 m diameter. As long as limitations of the imagery are understood, these methods can be applied over a larger and more heterogeneous area to examine environmental correlates of invasion success.  相似文献   
323.
扎龙河滨湿地水系统脆弱性特征及影响因素分析   总被引:20,自引:5,他引:20  
在总结分析国内外水资源脆弱性研究成果的基础上,提出了湿地水系统脆弱性概念,湿地水系统脆弱性表征了在湿地水文-生态系统耦合演化背景下水系统的生态水文功能满足程度,并以著名湿地-扎龙湿地为靶区,分析了湿地水系统脆弱性内涵和特征,详细讨论了降水量、气温、土地开发、水利工程建设及工农业污染对扎龙河滨湿地水系统脆弱性的影响,相应提出了减轻脆弱性程度的扎龙湿地水系统恢复措施和管理建议。  相似文献   
324.
The management of riverine environments is shown to require a knowledge and awareness of the complex interactions between fluvial and mass-wasting processes, riparian vegetation, and channel form. Identification of the cause of instability rather than the local symptoms, and knowledge of the temporal and spatial aspects of channel adjustment are central to the application of (1) appropriate analyses to estimate future channel changes, (2) appropriate mitigation measures, and (3) the protection of river-crossing structures and adjacent land. Conceptual models of channel evolution and bank-slope development are particularly valuable for interpreting past and present processes, applying appropriate computational techniques to estimate future channel changes, and implementing strategies to mitigate the impacts of processes likely to dominate the channel in the future. Techniques for identification and analysis of channel instability are interdisciplinary and provide a mechanism for estimating changes in channel-bed elevation and channel width with time. Features of channel form and associated riparian vegetation can be used as diagnostic criteria to identify channel processes, the stage of channel evolution and the magnitude and extent of instability. Changes in bed elevation with time can be represented using an exponential function; changes in channel width with time can be calculated using slope stability equations and (or) projection of a temporary angle of stability from a low-angle surface termed the ‘slough line’ that supports re-establishment of woody vegetation. These techniques, in combination with knowledge of the state of channel evolution, can then be used to assess the appropriateness of various mitigation measures to control on-going channel adjustments and to protect river-crossing structures.  相似文献   
325.
The aim of this work was to study the effect of controlling jarilla (Larreaspp.), nonforage shrubs for livestock, on two plant communities with different forage production in the arid mid-west of Argentina. Total vegetation cover, forage species cover and carrying capacity were determined during three growing seasons, for cleared and uncleared plots. At the end of the study, significant differences were found in theLarrea cuneifoliacommunity, where average forage species cover increased by 156% over the control, and greater carrying capacity (129%) was also obtained from the cleared treatment. No significant differences were found in theLarrea divaricatacommunity. Data lead us to recommend shrub control as an improvement practice only in areas with low forage species cover and poor carrying capacity.  相似文献   
326.
Alan R. Hill 《水文研究》2012,26(20):3135-3146
The effect of preferential flow in soil pipes on nitrate retention in riparian zones is poorly understood. The characteristics of soil pipes and their influence on patterns of groundwater transport and nitrate dynamics were studied along four transects in a 1‐ to >3‐m deep layer of peat and marl overlying an oxic sand aquifer in a riparian zone in southern Ontario, Canada. The peat‐marl deposit, which consisted of several horizontal layers with large differences in bulk density, contained soil pipes that were generally 0.1 to 0.2 m in diameter and often extended vertically for 1 to >2 m. Springs that produced overland flow across the riparian area occurred at some sites where pipes extended to the peat surface. Concentrations of NO3?–N (20–30 mg L?1) and dissolved oxygen (DO) (4–6 mg L?1) observed in peat pipe systems and surface springs were similar to values in the underlying sand aquifer, indicating that preferential flow transported groundwater with limited nitrate depletion. Low NO3?–N concentrations of <5 mg L?1 and enriched δ15N values indicated that denitrification was restricted to small areas of the peat where pipes were absent. Groundwater DO concentrations declined rapidly to <2 mg L?1 in the peat matrix adjacent to pipes, whereas high NO3?–N concentrations of >15 mg L?1 extended over a larger zone. Low dissolved organic carbon values at these locations suggest that supplies of organic carbon were not sufficient to support high rates of denitrification, despite low DO conditions. These data indicate that it is important to develop a greater understanding of pipes in peat deposits, which function as sites where the transport of large fluxes of water with low biogeochemical reaction rates can limit the nitrate removal capacity of riparian zones. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
327.
河岸湿地研究的理论与应用技术   总被引:2,自引:0,他引:2  
作为水陆之间的过渡带与生态交错区,河岸湿地具有一系列独特的性质和多种生态服务功能。鉴于河岸湿地在流域规划、河流保护与管理中的重要地位和作用,河岸湿地生态学研究已经开始得到重视。中国学者对河岸湿地生态学研究历经十余载,取得了众多研究成果,但是到目前为止,还没有形成一套比较系统和完备的学科体系,因而迫切需要加强该领域的系统研究工作。简要介绍了国内外河岸湿地基础理论,包括河岸湿地的定义、边界、结构和功能及其机理的研究;以及河岸湿地应用技术,主要包括河岸湿地生态模型与GIS技术的运用、岸坡稳定的生物工程技术和河岸湿地生态恢复的理论与实践等,提出了适应学科发展需要,综合已有的研究成果,构建河岸湿地生态学理论框架和学科体系的设想,以期推动河岸湿地生态学研究的发展。  相似文献   
328.
灌丛对流动沙地土壤特性和草本植物的影响   总被引:28,自引:16,他引:12  
通过对流动沙地灌丛内外土壤特性、土壤养分含量、土壤种子库和草本植物群落特征的差异性调查,分析了灌丛对沙地土壤特性和林下草本植被的影响。结果表明,在流动沙地0—20 cm土壤中细沙、极细沙、粘粉粒、有机质、总氮和总磷、有效磷和土壤水分含量,小叶锦鸡儿灌丛下分别较灌丛外高17.3%、4.4%、 49.5%、43.8%、40.0%、23.1%、16.3%和10.8%,黄柳灌丛下较灌丛外分别高3.5%、21.3%、0.0%、20.0%、16.7%、8.3%、10.6%和28.1%。小叶锦鸡儿、差不嘎蒿和黄柳灌丛下凋落物蓄积量要比灌丛外分别高18.3倍、365.2倍和15.5倍。差不嘎蒿灌丛下土壤种子库密度较灌丛外高10.9倍。原为半固定、半流动沙地优势种的多年生草本植物白草,不仅能在流动沙地灌丛下存活,而且具有较高的密度、高度、盖度和地上生物量。结果还表明,从灌丛中心到灌丛边缘,凋落物产量、土壤种子库密度、草本植物密度、盖度、生物量均存在明显的递减梯度,在灌丛外不远处消失。这些结果说明,在流动沙地,灌丛具有明显的“肥岛”效应和“保种”作用。  相似文献   
329.
荒漠河岸林胡杨和柽柳群落小气候特征研究   总被引:18,自引:7,他引:11  
在内蒙古额济纳旗运用微气象学方法以多路传感器同步观测的方式对极端干旱区荒漠河岸林小气候进行了观测。对我国极端干旱区荒漠河岸林胡杨和柽柳群落内的小气候特征与空旷地的差异进行了初步的探讨,并分析了产生这些差异的原因。结果表明:荒漠河岸林具有独特的小气候作用。具有改变太阳辐射、调节近地层地表及地下温度、缩小温差、降低风速、增加土壤湿度和提高空气湿度等重要生态作用。(1)胡杨和柽柳群落均起到了改变太阳辐射的作用,林冠层顶部的太阳总辐射量月平均值分别为341.72MJ·m-2、345.14MJ·m-2,林冠遮蔽使胡杨和柽柳林内总辐射比林外分别减少49.8%、49.3%;(2)生长季胡杨和柽柳林内的气温均低于林外,胡杨林平均比对照低1.62℃,柽柳林平均比对照低0.83℃,而且森林覆盖率越高降温作用越明显;群落上层气温高于群落下层,气温随高度增加而增加;(3)林内平均大气相对湿度均高于林外,胡杨林生长季比对照平均高8.5%,柽柳林平均比对照大4.2%。胡杨林地空气相对湿度各月值高于柽柳林地,平均湿度比柽柳高4.33%;(4)柽柳林月平均土壤温度(19.43℃)高于胡杨林地(18.20℃);(5)林内风速低于林外,胡杨林地平均风速为0.33m·s-1,比林外降低了2.7m·s-1;柽柳林平均风速为0.72m·s-1,比林外降低了2.31m·s-1。胡杨林比柽柳林对风的阻挡作用强。  相似文献   
330.
Shrub species are considered the dominant plants in arid desert ecosystems, unlike in semiarid steppe zones or in grassland ecosystems. On the Alxa Plateau, northern China, sparse vegetation with cover ranging from 15% to 30% is characterized mainly by multifarious shrubs because herbaceous species are strongly restricted by the extreme drought climate, wind erosion, overgrazing and sand burial. Patterns in shrub species richness and species abundance in relation to environmental conditions were examined by DCA (detrended correspondence analysis) and interpreted by a biplot. The relationships between species diversity and environmental factors were examined using regression analyses. Our results show that the distributions of the shrub species in response to environmental conditions can be grouped into four ecological types, corresponding with the biological traits of the shrubs and their responses to the gradients of soil texture and soil water content. Patterns in species richness and species abundance were mainly determined by the deeper soil water content, instead of the soil texture as hypothesized by numerous studies in semiarid grasslands. With exception of the deeper soil water content, soil organic matter and total N content were positively correlated with species abundance, while pH was negatively correlated with it. These findings imply that it is vital for current shrub diversity conservation to reduce agricultural water use in the middle reaches of the Heihe River, which supplies water for the lower reaches in the western parts of the plateau, and to reduce the amount of groundwater exploitation and urban and oasis water use, to increase the water supply from Helan Mountain to the eastern desert of the Alxa Plateau. Supported by National Key Technology R & D Program (Grant Nos. 2007BAD46B03, 2006BAD26B0201) and National Natural Science Foundation of China (Gant No. 40825001)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号