首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   267篇
  免费   69篇
  国内免费   13篇
测绘学   3篇
大气科学   2篇
地球物理   173篇
地质学   32篇
海洋学   16篇
综合类   2篇
自然地理   121篇
  2023年   1篇
  2022年   2篇
  2021年   9篇
  2020年   23篇
  2019年   13篇
  2018年   15篇
  2017年   13篇
  2016年   19篇
  2015年   18篇
  2014年   25篇
  2013年   33篇
  2012年   22篇
  2011年   10篇
  2010年   17篇
  2009年   19篇
  2008年   12篇
  2007年   17篇
  2006年   21篇
  2005年   8篇
  2004年   9篇
  2003年   8篇
  2002年   7篇
  2001年   7篇
  2000年   5篇
  1999年   5篇
  1998年   2篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1990年   2篇
  1989年   1篇
排序方式: 共有349条查询结果,搜索用时 15 毫秒
331.
Hydraulic interactions between rivers and floodplains produce off‐channel chutes, the presence of which influences the routing of water and sediment and thus the planform evolution of meandering rivers. Detailed studies of the hydrologic exchanges between channels and floodplains are usually conducted in laboratory facilities, and studies documenting chute development are generally limited to qualitative observations. In this study, we use a reconstructed, gravel‐bedded, meandering river as a field laboratory for studying these mechanisms at a realistic scale. Using an integrated field and modeling approach, we quantified the flow exchanges between the river channel and its floodplain during an overbank flood, and identified locations where flow had the capacity to erode floodplain chutes. Hydraulic measurements and modeling indicated high rates of flow exchange between the channel and floodplain, with flow rapidly decelerating as water was decanted from the channel onto the floodplain due to the frictional drag provided by substrate and vegetation. Peak shear stresses were greatest downstream of the maxima in bend curvature, along the concave bank, where terrestrial LiDAR scans indicate initial floodplain chute formation. A second chute has developed across the convex bank of a meander bend, in a location where sediment accretion, point bar development and plant colonization have created divergent flow paths between the main channel and floodplain. In both cases, the off‐channel chutes are evolving slowly during infrequent floods due to the coarse nature of the floodplain, though rapid chute formation would be more likely in finer‐grained floodplains. The controls on chute formation at these locations include the flood magnitude, river curvature, floodplain gradient, erodibility of the floodplain sediment, and the flow resistance provided by riparian vegetation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
332.
在塔里木河下游选取中度退化区、重度退化区和极度退化区进行野外植被调查,通过对比分析漫溢样地与无漫溢样地的数据,初步探讨漫溢干扰对不同退化条件下河岸植被群落组成和多样性的影响。结果表明:(1)3个退化区的无漫溢样地均以乔(灌)木为主要生活型,其物种数分别占各自样地总物种数的62.5%、100%和75%。多年生草本为中度退化区和重度退化区漫溢样地的主要生活型,其物种数所占比例分别为37.5%和42.86%;而极度退化区漫溢样地仍以乔(灌)木的物种数占据最大比例,为样地总物种数的50%。(2)漫溢干扰使得3个退化区的群落组成由乔(灌)木占据优势转变为多年生草本和一年生草本占据优势。(3)与无漫溢条件相比,漫溢条件下中度退化区、重度退化区和极度退化区的Simpson指数分别增加了40.55%、66.24%和171.39%,Shannon-Wiener指数分别增加了42.75%、72.68%和197.6%,Margalef指数分别增加了105.98%、88.54%和120.88%。这表明极度退化区的多样性指数受漫溢影响增长比例最大。  相似文献   
333.
Streambank erosion is a pathway for sediment and nutrient loading to streams, but insufficient data exist on the magnitude of this source. Riparian protection can significantly decrease streambank erosion in some locations, but estimates of actual sediment load reductions are limited. The objective of this research was to quantify watershed‐scale streambank erosion and estimate the benefits of riparian protection. The research focused on Spavinaw Creek within the Eucha‐Spavinaw watershed in eastern Oklahoma, where composite streambanks consist of a small cohesive topsoil layer underlain by non‐cohesive gravel. Fine sediment erosion from 2003 to 2013 was derived using aerial photography and processed in ArcMap to quantify eroded area. ArcMap was also utilized in determining the bank retreat rate at various locations in relation to the riparian vegetation buffer width. Box and whisker plots clearly showed that sites with riparian vegetation had on average three times less bank retreat than unprotected banks, statistically significant based on non‐parametric t‐tests. The total soil mass eroded from 2003 to 2013 was estimated at 7.27 × 107 kg yr.?1, and the average bank retreat was 2.5 m yr.?1. Many current erosion models assume that fluvial erosion is the dominant stream erosion process. Bank retreat was positively correlated with stream discharge and/or stream power, but with considerable variability, suggesting that mass wasting plays an important role in streambank erosion within this watershed. Finally, watershed monitoring programs commonly characterize erosion at only a few sites and may scale results to the entire watershed. Selection of random sites and scaling to the watershed scale greatly underestimated the actual erosion and loading rates. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
334.
典型草原区芨芨草灌丛积雪形态与滞雪阻雪能力   总被引:1,自引:0,他引:1  
左合君  闫敏  刘宝河  董智 《冰川冻土》2016,38(3):725-731
通过对典型草原区芨芨草(Achnatherum splendens)灌丛积雪体的调查,研究了灌丛特征(灌丛高度、灌丛迎风侧宽度、灌丛顺风侧长度)对于积雪形态(积雪高度、积雪宽度、雪辫长度)的影响。结果表明:芨芨草积雪形态参数与灌丛特征单一因子间呈显著的幂函数关系(指数<1),灌丛积雪发育过程及其形态特征是灌丛特征参数共同影响和作用的结果,灌丛高度对积雪高度与雪辫长度影响最大,灌丛迎风侧宽度对积雪宽度影响最大;在灌丛积雪的形成发育过程中,较小灌丛积雪形态发育较快,大灌丛积雪形态发育相对缓慢,不论灌丛特征如何变化,所有灌丛积雪体前期发育迅速,后期发育缓慢;灌丛二维空间滞雪范围模型直接反映灌丛对风力的干扰范围和积雪的潜在范围,间接反映灌丛的滞雪能力;灌丛三维空间阻雪量模型直接反映一定雪源、风况条件下灌丛的阻雪能力。建立的灌丛滞雪范围与灌丛阻雪体积模型,可为典型草原风吹雪区积雪资源估算和雪害植物防治技术提供理论依据。  相似文献   
335.
祁连山东段山地典型灌丛枯落物及土壤水源涵养功能研究   总被引:2,自引:0,他引:2  
为探讨高寒地区灌丛枯落物层及土壤层的水源涵养功能,以祁连山东段6种典型灌丛的枯落物和土壤为研究对象,采用野外调查与室内浸泡相结合的方法,对枯落物及土壤水文特征进行了研究.结果表明:(1)6种灌丛枯落物的蓄积量范围为0.23~3.61 t·hm-2,大小排序为山生柳>硬叶柳>绣线菊>金露梅>头花杜鹃>千里香杜鹃.(2)枯...  相似文献   
336.
In the first decades of the 20th century, the Ebro River was the Iberian channel with the most active fluvial dynamics and the most remarkable spatial‐temporal evolution. Its meandering typology, the dimensions of its floodplain, and the singularities of its flow regime produced an especially interesting set of river functions. The largest dynamics of the Ebro River are concentrated along the meandering profile of the central sector. During the 20th century, this sector experienced a large alteration of its geomorphological structure. We present here an analysis of this evolution through the cartographic study of a long segment of the river (~250 km) in 1927, 1956 and 2003. The results show a large reduction in bank sinuosity, a progressive loss of fluvial territory, and a large decrease in channel width. These changes are especially clear in the areas previously most ecologically connected with the active channel. The fluvial territory of the river in 2003 was approximately half that found during the first decades of the 20th century. Forest plantations, which were non‐existent in 1927, occupied more than 1500 ha of the study area in the last decade. This intense geomorphological transformation becomes ecologically visible in (i) a 35% reduction of the area occupied by riparian vegetation; (ii) a loss of the heterogeneity of riparian forest spots, which were formerly structured in an irregular mosaic far from the river thalweg; and (iii) a modification of the riparian forest structure, which is currently linear, uniform, thin and very close to the river axis. The ecomorphological alteration was intensified by the remarkable reduction in bank length (13%) and the reduced dynamism of the present river system, indicated by an increase in the percentage of fluvial territory occupied by riparian forests and a reduction in the area occupied by the active channel. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
337.
对不同类型土壤呼吸及其影响因素的研究有助于了解区域生态过程和全球气候变化。在石羊河下游,根据白刺灌丛生长及其生境状况,选择了初期发育、稳定、衰退、严重衰退的白刺灌丛植被,采用Li-8100土壤碳通量监测系统,研究了白刺灌丛演替过程的土壤呼吸日变化。结果表明,各发育阶段的白刺灌丛土壤呼吸最大值均出现在12:00,呼吸速率均值大小顺序为:稳定阶段>初期发育阶段>衰退阶段>严重衰退阶段。各发育阶段不同坡位土壤呼吸日变化动态存在差异,但平均值都表现为迎风坡>背风坡>丘间地。建立各因素与土壤呼吸之间的模型发现,白刺的生长状况与土壤呼吸之间的相关性达到极显著,表层土壤含水量对土壤呼吸的影响大于深层土壤,而二次函数较其他模型能更好地表达地下10 cm温度与土壤呼吸之间的关系,且两者之间相关性达到极显著。  相似文献   
338.
河岸湿地研究的理论与应用技术   总被引:2,自引:0,他引:2  
作为水陆之间的过渡带与生态交错区,河岸湿地具有一系列独特的性质和多种生态服务功能。鉴于河岸湿地在流域规划、河流保护与管理中的重要地位和作用,河岸湿地生态学研究已经开始得到重视。中国学者对河岸湿地生态学研究历经十余载,取得了众多研究成果,但是到目前为止,还没有形成一套比较系统和完备的学科体系,因而迫切需要加强该领域的系统研究工作。简要介绍了国内外河岸湿地基础理论,包括河岸湿地的定义、边界、结构和功能及其机理的研究;以及河岸湿地应用技术,主要包括河岸湿地生态模型与GIS技术的运用、岸坡稳定的生物工程技术和河岸湿地生态恢复的理论与实践等,提出了适应学科发展需要,综合已有的研究成果,构建河岸湿地生态学理论框架和学科体系的设想,以期推动河岸湿地生态学研究的发展。  相似文献   
339.
Shrub species are considered the dominant plants in arid desert ecosystems, unlike in semiarid steppe zones or in grassland ecosystems. On the Alxa Plateau, northern China, sparse vegetation with cover ranging from 15% to 30% is characterized mainly by multifarious shrubs because herbaceous species are strongly restricted by the extreme drought climate, wind erosion, overgrazing and sand burial. Patterns in shrub species richness and species abundance in relation to environmental conditions were examined by DCA (detrended correspondence analysis) and interpreted by a biplot. The relationships between species diversity and environmental factors were examined using regression analyses. Our results show that the distributions of the shrub species in response to environmental conditions can be grouped into four ecological types, corresponding with the biological traits of the shrubs and their responses to the gradients of soil texture and soil water content. Patterns in species richness and species abundance were mainly determined by the deeper soil water content, instead of the soil texture as hypothesized by numerous studies in semiarid grasslands. With exception of the deeper soil water content, soil organic matter and total N content were positively correlated with species abundance, while pH was negatively correlated with it. These findings imply that it is vital for current shrub diversity conservation to reduce agricultural water use in the middle reaches of the Heihe River, which supplies water for the lower reaches in the western parts of the plateau, and to reduce the amount of groundwater exploitation and urban and oasis water use, to increase the water supply from Helan Mountain to the eastern desert of the Alxa Plateau. Supported by National Key Technology R & D Program (Grant Nos. 2007BAD46B03, 2006BAD26B0201) and National Natural Science Foundation of China (Gant No. 40825001)  相似文献   
340.
The aim of this paper is to propose a method to detect the functionality of riparian vegetation as buffers/filters/trap against soil runoff and polluting agents caused by agricultural land and erosion areas, near the river. The suspended sediment yield (SSY) is the main vector for pollutants and nutrients generated from the runoff, in the Apennines torrents, indeed finer particles of the soil and their aggregates were proved to be the preferential vehicle of nitrogen, phosphorus, and other polluting agents. The stages of the current study were to spot soil erosion critical areas by the application of Universal Soil Loss Equation (USLE), on a river strip buffer of 200 m, with support of aerial photos and satellite images, land surveys, and application of a G. I. S. The riparian vegetation analysis, on a 20 m wide buffer, was obtained on the basis of ecologic richness, the structural quality, and the depth of the vegetation. The two maps obtained, “erosion risk strip” and “degree of effectiveness of riparian vegetation”, were connected to identify, for every river trunk, the level of functionality of the riparian vegetation in relation to the level of risk erosion on the near hill slopes. The methodology was applied on the Gaiana torrent, near Bologna, North Italian Apennines, where both basin soil loss and SSY have been well studies. The proposed methodology has been designed for the control of water pollution induced by suspended solids, pollutants, and nutrients coming from soil erosion and as a tool to improve the quality of the river environment. The method has the advantage of being easily applicable and can represent a basic tool for stakeholders to take decisions regarding the control and improvement of the river and it can suggest ways to improve or replant the degraded vegetation on the stream banks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号