首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   267篇
  免费   69篇
  国内免费   13篇
测绘学   3篇
大气科学   2篇
地球物理   173篇
地质学   32篇
海洋学   16篇
综合类   2篇
自然地理   121篇
  2023年   1篇
  2022年   2篇
  2021年   9篇
  2020年   23篇
  2019年   13篇
  2018年   15篇
  2017年   13篇
  2016年   19篇
  2015年   18篇
  2014年   25篇
  2013年   33篇
  2012年   22篇
  2011年   10篇
  2010年   17篇
  2009年   19篇
  2008年   12篇
  2007年   17篇
  2006年   21篇
  2005年   8篇
  2004年   9篇
  2003年   8篇
  2002年   7篇
  2001年   7篇
  2000年   5篇
  1999年   5篇
  1998年   2篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1990年   2篇
  1989年   1篇
排序方式: 共有349条查询结果,搜索用时 15 毫秒
71.
Riparian vegetation responds to hydrogeomorphic disturbances and environmental changes and also controls these changes. Here, we propose that the control of sediment erosion and deposition by riparian vegetation is a key geomorphological and ecological (i.e. biogeomorphic) function within fluvial corridors. In a 3 year study, we investigated the correlations between riparian vegetation and hydrogeomorphic dynamics along a transverse gradient from the main channel to the floodplain of the River Tech, France. Sediment erosion and deposition rates varied significantly along the transverse gradient as a function of the vegetation biovolume intercepting water flow. These effects, combined with the extremely strong mechanical resistance of pioneer woody structures and strong resilience of pioneer labile herbaceous communities, Populus nigra and Salix spp., explain the propensity of biogeomorphic succession (i.e. the synergy between vegetation succession and landform construction) to progress between destructive floods. This geomorphological function newly identified as an ‘ecosystem function’ per se encompasses the coupling of habitat and landform creation, maintenance and change with fundamental ecosystem structural changes in space and in time. Three different biogeomorphic functions, all related to the concept of ecosystem engineering, were identified: (i) the function of pioneer herbaceous communities to retain fine sediment and diaspores in the exposed zones of the active tract near the water resource, facilitating recruitment of further herbaceous and Salicacea species; (ii) the function of woody vegetation to drive the construction of forested islands and floodplains; and (iii) the function of stabilised riparian forests to act as ‘diversity reservoirs’ which can support regeneration after destructive floods. Overall, this study based on empirical data points to the fundamental importance of sediment flow control by pioneer riparian vegetation in defining fluvial ecosystem and landform organisation in time and in space. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
72.
Riparian vegetation is known to exert a number of mechanical and hydrologic controls on bank stability. In particular, plant roots provide mechanical reinforcement to a soil matrix due to the different responses of soils and roots to stress. Root reinforcement is largely a function of the strength of the roots crossing potential shear planes, and the number and diameter of such roots. However, previous bank stability models have been constrained by limited field data pertaining to the spatial and temporal variability of root networks within stream banks. In this paper, a method is developed to use root‐architecture data to derive parameters required for modeling temporal and spatial changes in root reinforcement. Changes in root numbers over time were assumed to follow a sigmoidal curve, which commonly represents the growth rates of organisms. Regressions for numbers of roots crossing potential shear planes over time showed small variations between species during the juvenile growth phase, but extrapolation led to large variations in root numbers by the time the senescent phase of the sigmoidal growth curve had been reached. In light of potential variability in the field data, the mean number of roots crossing a potential shear plane at each year of tree growth was also calculated using data from all species and an additional sigmoidal regression was run. After 30 years the mean number of roots predicted to cross a 1 m shear plane was 484, compared with species‐specific curves whose values ranged from 240 roots for black willow trees to 890 roots for western cottonwood trees. In addition, the effect of spatial variations in rooting density with depth on stream‐bank stability was modeled using the bank stability and toe erosion model (BSTEM). Three root distributions, all approximating the same average root reinforcement (5 kPa) over the top 1 m of the bank profile, were modeled, but with differing vertical distributions (concentrated near surface, non‐linear decline with depth, uniform over top meter). It was found that stream‐bank FS varied the most when the proportion of the failure plane length to the depth of the rooting zone was greatest. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
73.
The role of wood as a driver of landform development appears to have been overlooked in the interpretation of palaeo‐landscape change along river corridors. Deforested river corridors and wood‐free rivers characterize ‘modern’, managed landscapes, but along natural river corridors both driftwood dynamics and tree reproductive strategies can have a dramatic impact on the style and rate of channel and floodplain development. Therefore, we believe that interpretations of the post‐glacial history of river valleys across the northern temperate climatic zone could be usefully reassessed, incorporating the roles of riparian trees. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
74.
Several mechanisms contribute to streambank failure including fluvial toe undercutting, reduced soil shear strength by increased soil pore‐water pressure, and seepage erosion. Recent research has suggested that seepage erosion of noncohesive soil layers undercutting the banks may play an equivalent role in streambank failure to increased soil pore‐water pressure. However, this past research has primarily been limited to laboratory studies of non‐vegetated banks. The objective of this research was to utilize the Bank Stability and Toe Erosion Model (BSTEM) in order to determine the importance of seepage undercutting relative to bank shear strength, bank angle, soil pore‐water pressure, and root reinforcement. The BSTEM simulated two streambanks: Little Topashaw Creek and Goodwin Creek in northern Mississippi. Simulations included three bank angles (70° to 90°), four pore‐water pressure distributions (unsaturated, two partially saturated cases, and fully saturated), six distances of undercutting (0 to 40 cm), and 13 different vegetation conditions (root cohesions from 0·0 to 15·0 kPa). A relative sensitivity analysis suggested that BSTEM was approximately three to four times more sensitive to water table position than root cohesion or depth of seepage undercutting. Seepage undercutting becomes a prominent bank failure mechanism on unsaturated to partially saturated streambanks with root reinforcement, even with undercutting distances as small as 20 cm. Consideration of seepage undercutting is less important under conditions of partially to fully saturated soil pore‐water conditions. The distance at which instability by undercutting became equivalent to instability by increased soil pore‐water pressure decreased as root reinforcement increased, with values typically ranging between 20 and 40 cm at Little Topashaw Creek and between 20 and 55 cm at Goodwin Creek. This research depicts the baseline conditions at which seepage undercutting of vegetated streambanks needs to be considered for bank stability analyses. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
75.
River restoration and bank stabilization programs often use vegetation for improving stream corridor habitat, aesthetic and function. Yet no study has examined the use of managed vegetation plantings to transform a straight, degraded stream corridor into an ecologically functional meandering channel. Experimental data collected using a distorted Froude‐scaled flume analysis show that channel expansion and widening, thalweg meandering and riffle and pool development are possible using discrete plantings of rigid, emergent vegetation, and the magnitudes of these adjustments depend on the shape of the vegetation zone and the density of the vegetation. These experimental results were verified and validated using a recently developed numerical model, and model output was then used to discuss mechanistically how rivers respond to the introduction of in‐stream woody vegetation. Finally, a hybrid method of meander design is proposed herein where managed vegetation plantings are used to trigger or force the desired morphologic response, transforming a straight, degraded reach into a more functional meandering corridor. It is envisioned that such numerical models could become the primary tool for designing future stream restoration programs involving vegetation and assessing the long‐term stability of such activities. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
76.
拉萨河谷灌丛草原与农田水热平衡及植被水分利用特征   总被引:5,自引:0,他引:5  
以青藏高原的拉萨河谷下游的灌丛草原和农田为研究对象,在中国科学院拉萨高原生态试验站的农田与附近的灌丛草原开展实验.利用SHAW模型模拟了2004年10月-2005年9月灌丛草原与农田水热平衡以及根系吸水过程.模拟结果经分析得出,(1)农田所接收的净辐射比灌丛草原要多,农田接收的能量大部分以潜热形式支出,全年的波文比为0.29;而灌丛草原的波文比为0.89.灌丛草原全年的潜热通量是农田的53%,具有一定的抑制蒸散发的功能.(2)农田耗水量是灌丛草原的1.8倍.农田由于大量的灌溉造成较大的渗漏损失,同时也增加了土壤蒸发这一无益损耗.(3)深层土壤水向上的补给与根系吸水两方面的模拟都表明,灌丛草原的植被比农田能更大程度地利用深层土壤水.  相似文献   
77.
极端干旱区荒漠稀疏河岸林遥感分类研究   总被引:5,自引:0,他引:5  
研究以位于极端干旱区的塔里木河干流中下游地区为例,基于Landsat TM影像,结合决策树分类、几何光学模型与光谱角匹配,解决混合像元信息分解,实现干旱区稀疏荒漠河岸林类别识别。首先从遥感视角的角度,将地物分解为目标和背景,提出塔里木河干流荒漠河岸林植被分类系统;其次以多变量决策树法将非荒漠植被信息剔除,采用几何光学模型模拟各类荒漠植被的像元光谱,最后以光谱角匹配的方法将荒漠植被进一步进行分解,得到塔里木河干流中下游地区典型研究区的植被分类专题图,分类精度结果表明:基于混合像元分解与几何光学模型的分类方法总精度达到了79.43%,Kappa系数为0.718,表明分类质量良好。  相似文献   
78.
极端干旱区荒漠河岸林胡杨生长季树干液流变化   总被引:12,自引:10,他引:2  
应用热脉冲技术和自动气象站对极端干旱区荒漠河岸林建群种胡杨(Populus euphratica Oliv.)的树干的液流流速及其环境因子进行了为期2 a的连续观测,对胡杨树干液流日、季变化及其与环境因子相关性进行了深入的研究。结果表明:胡杨树干液流速率日变化具有明显的昼夜节律性。白天树干液流流速变化曲线呈多峰型。夜间,胡杨同样存在明显的树干液流现象,这主要是由根压引起的。胡杨树干液流速率7月最高,6月、8月次之,9月液流速率高于5月,10月最小,主要生长期6—8月胡杨日均蒸腾量占整个生长季的70%以上。不同林龄的胡杨树干液流速率不同,表现为15龄>25龄>50龄。树干液流量变化与环境因子中气象因子的变化密切相关。逐步回归结果表明,液流速率与净辐射、空气温度、空气相对湿度呈显著线性相关, 同时给出了依据常规气象因子估算液流速率的统计模型。  相似文献   
79.
通过野外样方调查河西走廊西段荒漠戈壁典型灌木群落多样性状况,研究探讨了 8 种典型 灌木群落物种多样性的空间分布格局及其与地理因子的关系,对荒漠戈壁植物群落的多样性的保 护和可持续发展具有重要意义。结果表明:(1) 8 个典型灌木群落 Shannon-Wiener 指数、Simpson 指 数、Margalef 指数和 Pielou 指数从高到低为:盐爪爪群落>麻黄群落>合头草群落>红砂群落>梭梭群 落>泡泡刺群落>多枝柽柳群落>沙拐枣群落;波动范围分别为 0.314 ~ 1.355、0.179 ~ 0.666、0.334 ~ 1.222 和 0.051 ~ 0.218,说明荒漠戈壁灌木群落物种多样性指数偏低,群落结构简单,物种组成稀 少。(2) 不同灌木群落内物种数越多,群落间 Jaccard 相似性系数越大。大部分灌木群落类型间 Jac? card 相似性在 0.20 ~ 0.60 之间,群落间相似水平较低,群落相对稳定。(3) 随着海拔的升高,Margalef 指数、Pielou 指数和 Shannon-Wiener 指数均呈先增加后降低的单峰型分布格局,最大值出现在海拔 2 000 m,且与海拔显著相关(P<0.05);在经度梯度上,从东到西,Margalef 指数、Pielou 指数和 Shan? non-Wiener 指数呈递增格局,但与经度无显著相关性(P>0.05);在纬度梯度上,从南到北,Margalef 指数、Pielou 指数和 Shannon-Wiener 指数呈显著递增趋势(P<0.05)。总体上,荒漠戈壁灌木群落物 种多样性呈现出明显的垂直(海拔)和纬度地带性分布格局。  相似文献   
80.
了解物种利用资源和占据生态空间的能力,对维持完善和科学保育荒漠戈壁植物群落的多样性具有重要意义。在综合反映各生态因子作用的群落类型和海拔梯度组合而成的两条资源轴上,测度分析了甘肃酒泉荒漠戈壁灌木群落主要优势种的生态位特征。结果表明:(1)在群落类型和海拔梯度两条资源轴上,红砂(Reaumuria songarica)、泡泡刺(Nitraria sphaerocarpa)和合头草(Sympegma regelii)的重要值和生态位宽度均较大,说明这些物种适应能力强,能够较好地利用环境资源,分布范围大,作为荒漠戈壁灌木群落中的广域种具有重要的生态地位和作用。(2)荒漠戈壁优势物种间的生态位重叠值多数较小,在群落类型和海拔梯度资源轴上生态位重叠值小于0.5的分别占总种对的62.63%和77.89%。生态位宽度大的物种之间一般生态位重叠值较高,物种利用资源能力强且存在竞争关系;然而,生态位宽度较小的物种与其他物种之间的生态位重叠程度较低,不同物种在环境资源的需求上产生互补,可以和谐共存;生态位宽度小的物种之间生态位重叠值仍较高,物种分布呈斑块现象;因此,生态位重叠与生态位宽度之间无显著相关性。(3)荒漠戈壁优势物种间总体表现为不显著的正关联,表明该植被群落结构及其物种之间处于稳定共存的状态。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号