首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1191篇
  免费   419篇
  国内免费   927篇
测绘学   15篇
大气科学   2051篇
地球物理   136篇
地质学   136篇
海洋学   61篇
天文学   2篇
综合类   33篇
自然地理   103篇
  2024年   11篇
  2023年   27篇
  2022年   40篇
  2021年   64篇
  2020年   65篇
  2019年   92篇
  2018年   70篇
  2017年   53篇
  2016年   54篇
  2015年   85篇
  2014年   121篇
  2013年   119篇
  2012年   123篇
  2011年   123篇
  2010年   103篇
  2009年   110篇
  2008年   161篇
  2007年   125篇
  2006年   130篇
  2005年   126篇
  2004年   93篇
  2003年   82篇
  2002年   62篇
  2001年   63篇
  2000年   66篇
  1999年   62篇
  1998年   50篇
  1997年   53篇
  1996年   53篇
  1995年   40篇
  1994年   32篇
  1993年   33篇
  1992年   9篇
  1991年   14篇
  1990年   2篇
  1989年   4篇
  1988年   7篇
  1987年   2篇
  1986年   2篇
  1984年   1篇
  1983年   3篇
  1982年   1篇
  1978年   1篇
排序方式: 共有2537条查询结果,搜索用时 218 毫秒
991.
Precipitation intercepted by forests plays a major role in more than one‐fourth of the global land area's hydrologic cycle. Direct in situ measurement of intercepted precipitation is challenging, and thus, it is typically indirectly estimated through comparing precipitation under forest cover and in the open. We discuss/compare measurement methods for forest precipitation interception beyond classical budgeting and then recommend future directions for improving water storage estimation. Comparison of techniques shows that methods submerging tree components produce the largest water storage capacity values. Whole‐tree lysimeters have been used with great success at quantifying water storage for the integrated system yet are unable to separate trunk versus canopy storage. Remote sensing, particularly signal attenuation, may permit this separation. Mechanical displacement methods show great promise and variety of techniques: pulley/spring system, branch strain sensors, trunk compression sensors and photography. Relating wind sway to water storage also shows great promise with negligible environmental disruption yet is currently at the proof‐of‐concept stage. Suggested future directions focus on development of common features regarding all discussed methods: (i) measurement uncertainties or processes beyond interception influencing the observed signal, (ii) scaling approaches to move from single tree components to the single‐tree and forest scales and (iii) temporal scaling to estimate the relevance of single‐interception components over longer timescales. Through addressing these research needs, we hope the scientific community can develop an ‘integrated’ monitoring plan incorporating multiple measurement techniques to characterize forest‐scale water storage dynamics while simultaneously investigating underlying (smaller‐scale) components driving those dynamics across the spectrum of precipitation and forest conditions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
992.
993.
Though high rates of nitrate (NO3) leaching from forests are undesirable, the factors significantly regulating stream NO3 concentration is not clarified yet. In Japan, not only near metropolitan areas but also the Japan Sea-side area with heavy snowfall is well known for receiving more than 10 kg-N ha−1 year−1 of nitrogen (N) deposition. However, NO3 concentration in stream water is relatively low in the Japan Sea-side area compared with its concentration in other areas. We examined important environmental factors regulating stream NO3 concentrations at baseflow condition in a large region of Japan, the Kinki region (KIN) including a part of Japan Sea-side (JSK) using Random Forest regression. The amounts of N deposition and precipitation were common regulating factors for stream NO3 concentration at baseflow condition. Random forest showed the significant correlation between the factors related to ecosystem N retention and stream NO3 concentration at baseflow condition, and it suggests that large N deposited during the growing season was incorporated into the ecosystem in the entire KIN. Heavy rain and snow flush N and wash out N accumulated in the surface soil, causing small N accumulation in forests. Also, large precipitation dilute NO3 concentration in baseflows. These things lowered stream NO3 concentration at baseflow condition. Especially in JSK, most of N deposed with the heavy snow flushed out during the snowmelt period. We provided the first statistical confirmation using Random Forest regression that N accumulation and cycling in forest ecosystems were related to NO3 leaching from forests into streams.  相似文献   
994.
Martin Hanel  Petr Máca 《水文研究》2014,28(6):2929-2944
Rain event characteristics are assessed in a 10‐year (1991–2000) record for 122 stations in the Czech Republic. Individual rain events are identified using the minimum interevent time (mit) concept. For each station, the optimal mit value is estimated by examining the distribution of interevent times. In addition, various mit values are considered to account for the effect of mit on rain event characteristics and their interrelationships. The interdependence between rain event characteristics and altitude, average rainfall depth, and geographic location are explored using simple linear models. Most rain event characteristics can be to some extent explained by average total rainfall or altitude, although models including the former significantly outperformed models using the latter. Significant correlation was found among several pairs of monthly mean characteristics often including event rain rate (with event duration, depth, maximum intensity, and fraction of intraevent rainless periods). Moreover, strong correlation was revealed between number of events, interevent time, event depth, and duration. In general, correlation decreases in absolute value with mit. Strong spatial correlation was found for the mean monthly interevent time and number of events. Spatial correlation was considerably smaller for other characteristics. In general, spatial dependence was smaller for larger mit values. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
995.
The importance of satellite datasets as alternative sources of precipitation information has been argued in numerous studies. Future developments in satellite precipitation algorithms as well as utilization of satellite data in operational applications rely on a more in‐depth understanding of satellite errors and biases across different spatial and temporal scales. This paper investigates the capability of satellite precipitation data sets with respect to detecting heavy precipitation rates over different temporal accumulations. In this study, the performance of Tropical Rainfall Measuring Mission real time (TRMM‐RT), Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks and CPC MORPHing (CMORPH) is compared against radar‐based gauge‐adjusted Stage IV data. The results show that none of the high temporal resolution (3‐h) datasets are ideal for detecting heavy precipitation rates. In fact, the detection skill of all products drops as the precipitation thresholds (i.e. 75 and 90 percentiles) increase. At higher temporal accumulations (6, 12 and 24 h), the detection skill improves for all precipitation products, with CMORPH showing a better detection skill compared to all other products. On the other hand, all precipitation products exhibit high false alarm ratios above the heavy precipitation thresholds, although TRMM‐RT lead to a relatively smaller level of false alarms. These results indicate that further efforts are necessary to improve the precipitation algorithms so that they can capture heavy precipitation rates more reliably. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
996.
The responses of atmospheric pCO2 and sediment calcite content to changes in the export rain ratio of calcium carbonate to organic carbon are examined using a diffusion-advection ocean biogeochemical model coupled to a one-dimensional sediment geochemistry model. Our model shows that a 25% reduction in rain ratio decreases atmospheric pCO2 by 59 ppm. This is caused by alkalinity redistribution by a weakened carbonate pump and an alkalinity increase in the whole ocean via carbonate compensation with decreasing calcite burial. The steady state responses of sedimentary calcite content and calcite preservation efficiency are rather insensitive to the deepening of the saturation horizon of 1.9 km. This insensitivity is a result of the reduced deposition flux that decreases calcite burial, counteracting the saturation horizon deepening that increases calcite burial. However, in the first 10,000 years the effect of reduced calcite deposition on the burial change is more prominent; while after 10,000 years, the effect of saturation horizon deepening is more dominant. The lowering of sediment calcite content for the first 10,000 years is effectively decoupled from the 1.9 km downward shift of the saturation horizon. Our results are in part a consequence of the more dominant role that respiration CO2 plays in sediment calcite dissolution over bottom water chemistry in our control run and support the decoupling of calcite lysocline depth and saturation horizon shifts, as suggested originally by Archer and Maier-Reimer (1994) and Archer et al. (2000).  相似文献   
997.
The connectivity and upscaling of overland runoff and sediment transport are important issues in hillslope hydrology to identify water flux and sediment transport within landscape. These processes are highly variable in time and space with regard to their interactions with vegetation and soil surface conditions. The generation of overland runoff and its spatial connectivity were examined along a slope to determine the variations in the transport mechanism of runoff and soil particles by rain splash and overland runoff. Field experiments were conducted by erosion plots on a steep hillslope at lengths of 5, 10, and 15 m. The overland runoff connectivity and flow transport distance decreased with the slope length, while spatial variability of infiltration increased significantly with the slope length. Observation of subsurface flow revealed that surface soil and litter layer could have important role in water transport. However, the surface soil water content and water flux transport along the slope was highly variable for different storm events; the variability was related to the complexity of the system, mainly by way of the initial wetness conditions and infiltration characteristics. Only net rain‐splashed soil was measurable, but examination of the water flux, overland runoff and sediment transport connectivity, characteristics of sheetwash, and the variability in spatial infiltration indicated an increase in the contribution of the rain splash transport mechanism along the slope. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
998.
对不同酸雨条件下水稻土Cd释放的研究发现,吸附态Cd释放的过程可以分为快反应和慢反应2个阶段。采用常见的动力学方程和本文创建的反三角函数方程,对淋滤实验数据进行了拟合。结果表明,反三角函数方程对多种酸雨条件下水稻土吸附态Cd释放过程的拟合度最佳。此外,多项式方程也能较好地描述这一过程。  相似文献   
999.
孔海江  王霄  王蕊  吕晓娜 《水文》2012,(4):37-43
通过分析1961~2010年发生在河南中南部持续性暴雨的水汽输送特征,从水汽输送角度对河南省中南部(河南省黄河以南地区)的持续性暴雨进行分型,总结出3种水汽输送类型,即西南气流型、螺旋型和"S"型。对比分析这3种类型代表个例的水汽输送和水汽收支特征后发现,河南中南部的持续性暴雨主要是由西南气流型的水汽输送造成的;"S"型和螺旋型水汽输送也是造成河南中南部持续性暴雨的原因之一。西南气流型和螺旋型的水汽输送是造成淮河上游洪涝的主要水汽输送类型,其对应的天气影响系统分别是:高层低槽(低涡)、中低层切变线和台风低压(台风倒槽)。  相似文献   
1000.
黄奕武  董林  刘达  陈博宇 《气象》2022,48(1):122-128
2021年10月北半球大气环流特征主要表现为:极涡主要呈单极型分布,位置偏离北极点靠近西伯利亚;中高纬地区环流呈5波型分布,500 hPa位势高度场在亚洲东北部至东北太平洋一带为负距平,在北美至北极地区为正距平;副热带高压呈狭长带状分布,几乎环绕北半球;西北太平洋副热带高压较近几年同期范围偏小.10月全国平均降水量为5...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号