首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   122篇
  免费   6篇
  国内免费   21篇
地球物理   16篇
地质学   114篇
海洋学   11篇
综合类   4篇
自然地理   4篇
  2022年   2篇
  2021年   1篇
  2020年   2篇
  2019年   4篇
  2018年   1篇
  2017年   3篇
  2016年   6篇
  2015年   7篇
  2014年   10篇
  2013年   7篇
  2012年   1篇
  2011年   5篇
  2010年   4篇
  2009年   13篇
  2008年   11篇
  2007年   6篇
  2006年   14篇
  2005年   8篇
  2004年   5篇
  2003年   7篇
  2002年   5篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1998年   3篇
  1997年   2篇
  1996年   4篇
  1995年   3篇
  1993年   1篇
  1992年   5篇
  1991年   1篇
  1990年   2篇
排序方式: 共有149条查询结果,搜索用时 109 毫秒
1.
Biominerals are natural composite materials comprising organic and inorganic components. Detailed knowledge of the nature and distribution of both components is a crucial requirement in order to advance our understanding of biomineral formation, their material properties and preservation potential as well as the interpretation of environmental data. Detailed chemical data are essential for our understanding of the nature and distribution of such components. Micro-XANES mapping at the sulphur K-edge reveals that, in the brachiopod Terebratulina retusa, the sulphate concentration is higher in the outer (primary) layer than in the calcite fibres of the secondary layer. This is co-incident with a higher magnesium concentration. In contrast, the sheaths surrounding the calcite fibres contain sulphur as thiol, confirming the presence of protein while, the sulphur within the fibres themselves, occurs as sulphate. Micro-XANES analysis of the insoluble organic extract from T. retusa indicates the presence of organic sulphate while Micro-Raman spectroscopy confirms that structurally substituted sulphate (SSS) is also present although semi-quantitative Raman spectroscopy carried out in this spectral region (wavenumbers 900–1200) indicates that the sulphate present is at the threshold of detection by Raman spectroscopy. The distribution of phosphorus in the shell of T. retusa correlates well with that of protein indicating the presence of phosphorylated proteins in the periostracum, the sheaths surrounding the calcite fibres and the interface between the primary and secondary layer.  相似文献   
2.
In situ atomic force microscopy (AFM) has been used to compare the growth of pure calcite and the growth of calcite in the presence of sulfate ions from aqueous solutions at a constant value of supersaturation (S.I. = 0.89) with respect to calcite. The effect of sulfate ions on calcite growth rates is determined and a potential incorporation of sulfate ions is identified in the calcite during growth. Solutions supersaturated with respect to calcite with solution concentration ratio of one and a constant pH of 10.2, were prepared and sulfate was added as Na2SO4 aqueous solution. The solution composition was readjusted in order to keep the supersaturation and pH constant. PHREEQC was used to determine relevant solution concentrations. In situ AFM experiments of calcite growth were performed using a fluid cell and flowing solutions passed over a freshly cleaved calcite surface. Growth rates were determined from the closure of the rhombohedral etch pits induced by initial dissolution with pure water. The spreading rate of 2-dimensional nuclei was also measured. At low concentrations of sulfate (≤ 0.5 mM), no effect on the growth rate of the calcite was observed. At higher concentrations (2 to 3 mM) of sulfate, the growth rate increased, possibly because a higher concentration of calcium and carbonate was necessary to maintain the supersaturation constant. At much higher concentrations of additional sulfate (up to 60 mM) the growth rate of the calcite was substantially decreased, despite the fact that a further increase of calcium and carbonate was required. The morphology of 2-dimensional growth nuclei became increasingly elongated with increasing sulfate content. Measurements of step height showed that newly grown steps were approximately 1 Å higher when grown in high sulfate concentrations, compared to steps grown in sulfate-free solutions. At sulfate concentrations above 5 mM the growth mechanism changes from layer growth to surface roughening. These observations suggest that the new growth has incorporated sulfate into the calcite surface.  相似文献   
3.
Microfabrics were analysed in calcite mylonites from the rim of the Pelvoux massif (Western Alps, France). WNW-directed emplacement of the internal Penninic units onto the Dauphinois domain produced intense deformation of an Eocene-age nummulitic limestone under lower anchizone metamorphic conditions (slightly below 300 °C). Two types of microfabrics developed primarily by dislocation creep accompanied by dynamic recrystallisation in the absence of twinning. Coaxial kinematics are inferred for samples exhibiting grain shape fabrics and textures with orthorhombic symmetry. Their texture (crystallographic preferred orientation, CPO) is characterised by two c-axis maxima, symmetrically oriented at 15° from the normal to the macroscopic foliation. Non-coaxial deformation is evident in samples with monoclinic shape fabrics and textures characterised by a single oblique c-axis maximum tilted with the sense of shear by about 15°. From the analysis of suitably oriented slip systems for the main texture components under given kinematics it is inferred that the orthorhombic textures, which developed in coaxial kinematics, favour activity of <10–11> and <02–21> slip along the f and r planes, respectively, with minor contributions of basal-<a> slip. In contrast, the monoclinic textures, which developed during simple shear, are most suited for duplex <a> slip along the basal plane. The transition between the dominating slip systems for the orthorhombic and monoclinic microfabrics is interpreted to be due to the effects of dynamic recrystallisation upon texture development. Since oblique c-axis maxima documented in the literature are most often rotated not with but against the shear sense, calcite textures alone should not be used as unequivocal shear sense indicators, but need to be complemented by microstructural criteria such as shape preferred orientations, grain size estimates and amount of twinning.  相似文献   
4.
The Kelçyra area is emplaced in a foreland fold-and-thrust belt (FFTB), characterized by a westward thrusting with the Triassic evaporites as the major décollement level. Several secondary features related with this evolution, like backthrusting, folding, duplex structures, evaporite diapirism are present. During the FFTB evolution, the study area has been subjected to several fracturing events with associated stages of fluid migration. During the pre-deformational stage, complex textures such as crack-and-seal features most likely reflect expulsion of overpressured fluids. These fluids were dominantly host-rock buffered. Within the post-deformational stage, a meteoric fluid caused cementation and development of a karst network during a period of emergence after the thrust emplacement. Subsequently, Mg calcite reprecipitated in the more stable carbonate phase calcite and dolomite, which filled part of the karts network. The latter is finally dedolomitized and locally partially dissolved by a second meteoric fluid flow, which greatly increased the secondary porosity.  相似文献   
5.
Fe and Mn occur in calcite cements depending on the oxidizing–reducing conditions of cementing waters, which may change according to depositional and diagenetic environments. In red beds, Mn and Fe are available from the ferruginous matrix. Thus, it is possible to know the oxidizing–reducing conditions of fluids that precipitated calcite as a function of Mn and Fe content in calcite cement. A detailed petrological (with special attention to cathodoluminescence) and geochemical analysis of these cements is a useful tool to constrain the diagenetic evolution of red beds and the history of the basin where they deposited.  相似文献   
6.
The minerals of Oldoinyo Lengai natrocarbonatite lavas are unstable under atmospheric conditions. Subsolidus mineral assemblages in natrocarbonatites were studied in 105 samples from contemporary eruptions ranging from present day to about 100 years old. The subsolidus minerals in natrocarbonatites were formed (i) along cracks on the lava surface from hot gases escaping during cooling, (ii) as atmospheric alteration by solution of water-soluble minerals, in particular halides and gregoryite, and by hydration of nyerereite under the influence of meteoric water and (iii) by reaction with fumarole gases. After solidification, the lavas were cut by a network of thin cracks, the edges of which are covered by polymineralic encrustations. Samples collected 2–24 h after eruption contain nahcolite, trona, sylvite, and halite with accessory kalicinite and villiaumite. Atmospheric humidity results immediately (≥ 2 h after eruption) in alteration of black lavas that is marked by the appearance of white powdery thermonatrite with nahcolite on the lava surface. Subsequent reaction (weeks, months, years) of natrocarbonatite with meteoric water and the atmosphere results in the formation of pirssonite, gaylussite, shortite, trona, thermonatrite, nahcolite and calcite. Generally, the first important step is the formation of pirssonite and the end-members are calcite carbonate rocks or loose aggregates. Fumarolic activity is common for the active northern crater of the volcano. Reaction of hot (54–141 °C) fumarolic gases with natrocarbonatite leads to the formation of sulphur, gypsum, calcite, anhydrite, monohydrocalcite, barite and celestine. Changes in mineralogy of the natrocarbonatite lead to substantial chemical transformation. The most obvious chemical changes in this process are the loss of Na, K, Cl and S, combined with an increase in H2O, Ca, Sr, Ba, F and Mn. The oxygen and carbon isotopic composition of altered natrocarbonatites shows a significant shift from the primary “Lengai Box” to high values of δ18O and δ13C. Calcite exhibits δ13C values between − 2‰ and − 4‰ PDB and δ18O values of + 23‰ to + 26‰ SMOW. The observed assemblages of secondary minerals formed by reaction with atmosphere and meteoric water, the changes in chemical composition of the natrocarbonatite and field observations suggest that alteration of natrocarbonatite is an open-system low-temperature process. It takes place at temperatures between 8 and 43 °C with the addition of H2O to the system and the removal of Na, K, Cl and S from the carbonatites. Low-temperature thermodynamic models developed for alkali carbonate systems can be used for the interpretation of Oldoinyo Lengai subsolidus mineralization.  相似文献   
7.
Natural calcite from Kuerle, Xinjiang, China, shows orange-red fluorescence when exposed to short-wave ultraviolet (UV) light (Hg 253.7 nm). Photoluminescence (PL) emission and excitation spectra of the calcite are observed at room temperature in detail. The PL emission spectrum under 208 nm excitation consists of three bands: two UV bands at 325 and 355 nm and an orange-red band at 620 nm. The three bands are ascribed to Pb2+, Ce3+ and Mn2+, respectively, as activators. The Pb2+ excitation band is observed at 243 nm, and the Ce3+ excitation band at 295 nm. The Pb2+ excitation band is also observed by monitoring the Ce3+ fluorescence, and the Pb2+ and Ce3+ excitation bands, in addition to six Mn2+ excitation bands, are also observed by monitoring the Mn2+ fluorescence. These indicate that four types of the energy transfer can occur in calcite through the following processes: (1) Pb2+ → Ce3+, (2) Pb2+ → Mn2+, (3) Ce3+ → Mn2+ and (4) Pb2+ → Ce3+ → Mn2+.  相似文献   
8.
Mn K-edge EXAFS spectroscopy of solid-solution samples encompassing the complete MnCO3–CaCO3 series shows that first-shell Mn–O distances deviate little from the 2.19-Å distance observed in pure MnCO3. Very slight lengthening is observed only in the limiting case of dilute Mn(II) calcite solid solutions, where the Mn–O distance is 2.21 Å. The observed nearly complete structural relaxation and the composition independence of the Mn–O distance are consistent with the Pauling model behavior of solid solutions, and agree with previous studies showing a high degree of relaxation around hetero-sized substituents in the calcite structure. Strain occurs through bond bending, which is facilitated by the exclusively corner-sharing topology of calcite. Observed distances from Mn to more distant neighbors show significant variation across the solid-solution series that resembles Vegard's law-type behavior but reflects averaging. The high degree of relaxation suggests modest enthalpies of mixing in the solution, consistent with calorimetric studies.  相似文献   
9.
鄂尔多斯盆地中部奥陶系方解石脉中包裹体流体势研究   总被引:5,自引:2,他引:5  
结合前人研究成果,归纳出了一种利用盐水包裹体均一温度与盐度确定流体势的方法,并对鄂尔多斯盆地中部气田奥陶系方解石脉中包裹体进行了流体势计算,推算出了古流体运移方向。  相似文献   
10.
Calcite dendrite crystals are important but poorly understood components of calcite travertine that forms around many hot springs. The Lýsuhóll hot-spring deposits, located in western Iceland, are formed primarily of siliceous sinters that were precipitated around numerous springs that are now inactive. Calcite travertine formed around the vent and on the discharge apron of one of the springs at the northern edge of the area. The travertine is formed largely of two types (I and II) of complex calcite dendrite crystals, up to 1 cm high, that grew through the gradual addition of trilete sub-crystals. The morphology of the dendrite crystals was controlled by flow direction and the competition for growth space with neighbouring crystals. Densely crowded dendrites with limited branching characterize the rimstone dams whereas widely spaced dendrites with open branching are found in the pools. Many dendrite bushes in the pools nucleated around plant stems. Growth of the dendrite crystals was seasonal and incremental. Calcite precipitation was driven by rapid CO2 degassing of CO2-rich spring waters during the spring and summer. During winter, when snow covered the ground and temperatures were low, opal-A precipitated on the exposed surfaces of the dendrites. Segmentation of dendrite branches by discontinuities coated with opal-A and overgrowth development around sub-crystals resulted from this seasonal growth cycle. The calcite dendrite crystals in the Lýsuhóll travertine differ in morphology from those at other hot springs, such as those at Lake Bogoria, Kenya, and Waikite in New Zealand. Comparison with the calcite dendrite crystals found at those sites shows that dendrite morphology is site-specific and probably controlled by carbonate saturation levels that, in turn, are controlled by the rate of CO2 degassing and location in the spring outflow system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号